

Parafield Airport Limited

Parafield Airport Off-site Groundwater Use Survey & Groundwater Investigation

September 2019

Executive summary

Introduction

Parafield Airport Limited (PAL) engaged GHD Pty Ltd (GHD) to undertake this environmental investigation in the vicinity of Parafield Airport following the identification of elevated Per- and poly-fluoroalkyl substances (PFAS) levels in groundwater at monitoring wells GW3-PFC and P33 which are located airside on the western boundary of the airport and landside in the south western extent of the airport, respectively. Groundwater samples collected at GW3_PFC and P33 reported PFAS concentrations that exceeded the adopted criteria PFAS National Environmental Management Plan (NEMP) 2018 Health Drinking Water. As a result, Adelaide Airport Limited (AAL), in consultation with the South Australian (SA) Environmental investigation of off-site areas to the west and southwest of the Parafield Airport. This included a bore use survey of residential and recreational properties within the assessment area.

Background

PAL took over operations of Parafield Airport in May 1998 in a leasehold agreement with the Australian Government. PAL is pro-actively managing the response to PFAS related investigations at Parafield Airport based on guidance from Federal and State regulators including the EPA.

Historically, a PFAS containing firefighting foam called 3M Lightwater[™] was used for both operational and training purposes at Parafield from the early 1970s until 1986. This period of PFAS foam use at Parafield Airport is limited compared to many other Australian airports, where the use of 3m Lightwater[™] continued until 2003 and Ansulite[™] was then used until 2010.

As a first step in the process, a qualitative risk assessment was undertaken on and off the airport to identify potential sources of PFAS contamination and the human and ecological receptors potentially impacted by them.

PAL then undertook groundwater and stormwater investigations to improve the understanding of the potential risks identified by the qualitative risk assessment. PAL focused their investigations on assessing potential risks to local residents. Given this focus on local residents, investigations targeted airport boundary locations, particularly those boundary locations with residential areas located down gradient.

Results of the groundwater and stormwater investigations and the qualitative risk assessment were then used by specialist environmental risk assessors to undertake a detailed on and off airport human health and ecological risk assessment (HHERA). In addition to providing an assessment of potential risks associated with PFAS contamination, the HHERA also identified a number of data gaps. PAL undertook further investigations to fill these data gaps and better understand the potential off-airport risks.

The HHERA was updated using the results of the further investigations and a Project Control Group (PCG), including the SA EPA and the Department of Infrastructure, Transport, Cities and Regional Development was established to assess potential risks and determine requirements for additional investigations.

Based on the updated HHERA, the PFAS PCG determined that an off airport groundwater investigation and groundwater use survey were necessary within Bridges Estate (Mawson Lakes) and an area within Parafield Gardens.

In November 2018 PAL engaged GHD to undertake groundwater bore use survey of residential and recreational properties adjacent to the southern boundary (Mawson Lakes) and the western boundary (Parafield Gardens) of Parafield Airport. PAL also engaged GHD to carry out further groundwater investigations within these off-site survey areas and on the airport grounds.

Objectives

The objective of the environmental investigation was to further assess the extent of PFAS impacted groundwater off airport and down hydraulic gradient of existing monitoring wells GWP3-PFC and P33. The study also examined water use at properties within the investigation area.

Scope of Work

The environmental investigation presented in this report consisted of two phases.

Phase 1 investigation included:

- Installation of two on site monitoring wells (P34 and P35) and four off site groundwater monitoring wells (P36 to P39).
- A groundwater monitoring event (GME) including gauging and sampling of one existing monitoring wells (P9) and six newly installed monitoring wells (P34 to P39).
- A groundwater use survey to the south (Area 1) and west (Area 2) of the airport. Area 1 included properties to the north of Elder Smith Road and Mawson Lakes that border the south western boundary of the Airport. Area 2 included properties along the Bardsley Avenue boundary to determine if any users of groundwater from unregistered well existed in these two areas.

Based on PFAS concentrations above the groundwater acceptance criteria (GAC), as defined in Section 3.1, within the Parafield Gardens investigation area, the groundwater use survey and groundwater investigation were extended. Conversely, PFAS concentrations within the Bridges Estate (Mawson Lakes) survey area were below the GAC (defined in Section 3.1) and other than on-going monitoring, no further investigations were deemed necessary.

Phase 2 investigation included:

- Installation of one on site monitoring wells (P44) and four off site groundwater monitoring wells (P40 to P43)), to improve understanding of potential off-airport risks associated with the former waste oil sump on the airport.
- A GME including gauging and sampling of off-site monitoring wells P40 to P43 and on site monitoring well P44.
- Drilling and sampling of one soil borehole using a hand auger (HA) located on site adjacent to P44 to determine if a localised PFAS source was responsible for the PFAS concentrations observed in monitoring well P44.
- A groundwater use survey of additional properties to the west of the airport boundary (Area 3) which include the Parafield Gardens Soccer and Sports Club, to Kellaway, Mailey and Woodfull and Bradman Streets to Hilditch Drive.
- A groundwater use survey of additional properties to the west of the airport boundary (Area 3) which include the Parafield Gardens Soccer and Sports Club, to Kellaway, Mailey and Woodfull and Bradman Streets to Hilditch Drive.
- A resampling GME was undertaken in March 2019, however due to some discrepancies in the laboratory data a subsequent resampling event was undertaken by GHD in May 2019.

A limited sampling round on three selected wells was also undertaken by Environmental Projects in April 2019 for results comparison.

Report Findings and Conclusions

Based on the results of this investigation, the following conclusions have been made:

- The first regional aquifer is located at depths ranging between 2.567 metres below ground level (mBGL) (P9) and 6.046 mBGL (GWP1-PFC), and groundwater elevations across the site range between 2.622 metres above height datum (mAHD) (P40) and 8.718 mAHD (P44), as of March 2019.
- Groundwater flow direction was inferred to flow towards the south west towards the Gulf of St. Vincent.
- Review of the WaterConnect bore records indicated that for 62 bores within 2 km radius with available total dissolved solids (TDS) records, TDS values were below 1,200 mg/L for 16 operational bores; however, these bores were either constructed before 1985 and unlikely to be functional, or were drilled to >120 m depth to tertiary aquifer associated with the Managed Aquifer Recharge (MAR) scheme.
- Within the on-airport and off-airport investigation area TDS values (recorded between November 2018 and May 2019) ranged between 997 mg/L (P33) and 13,052 mg/L (P39). An assessment of groundwater salinity indicated that saline groundwater in the vicinity of the site is of poor quality and is unlikely to be suitable for potable use and/or for irrigation of vegetable gardens, recreational use and maintenance of aquatic ecosystems (both fresh and marine).
- The dry weight and leachable PFAS concentrations detected in shallow soil adjacent to P44 did not indicate a significant localised residual source in shallow soil to be present at this location, however detectable leachable PFAS concentrations were detected in shallow soils at this location. PFAS concentrations in soil at this location are not considered to represent a contamination risk to the adjacent stormwater harvesting infrastructure associated with the MAR scheme. This was also confirmed by the results of sampling undertaken by Salisbury Water (provided by AAL) which indicated that stormwater PFAS concentrations were below the drinking water guideline values.
- The current and historical groundwater investigation results indicated presence of
 potentially two on airport sources contributing to PFAS in groundwater: former firefighting
 training ground and an unidentified localised source in the northern portion of the airport.
- The extent of PFAS was delineated to the drinking water criterion to the south and to the south-west of the Airport.
- The extent of PFAS has not been delineated to the drinking water criterion to the west of on Airport monitoring well GWP3_PFC. Investigations have not yet been undertaken to the west of P44 and the extent of PFAS to the west of this well location has not been determined. There was some inconsistency of the off-airport results down hydraulic gradient of GWP3-PFC, as no significant decrease in PFAS concentrations have been observed down the hydraulic gradient to the west.
- Off-airport water use survey undertaken for the 122 properties within the Mawson Lakes area indicated that all property owners use mains water for consumption, and only one resident used groundwater bore only for irrigation of lawns, suggesting that there is no pathway for residents to be exposed to PFAS within the Mawson Lakes assessment area.
- Water use survey within the Parafield Gardens area revealed that one residential property and the Parafield Gardens soccer club represented recreational groundwater users,

providing a reliable representation of groundwater use in this investigation area. Both water bores were reported to be registered, in working condition and used for irrigating the lawn. Survey respondents confirmed that groundwater was not plumbed into buildings. Neither of the respondents indicated that they have rainwater tanks that could have been used to store groundwater.

 The CSM indicates that potentially complete exposure pathways may exist via irrigation of vegetable gardens with shallow groundwater, via uptake of shallow groundwater by fruiting trees, which are then consumed and via migration of contaminated groundwater to nearby water bodies. However, the water use survey confirmed that no residents were using water for irrigation of vegetable gardens or fruit trees. Therefore there is not considered to be a pathway for residents to be exposed to PFAS within the water use survey area.

Table of contents

1.	Introduction		1
	1.1	Background	1
	1.2	Previous Investigations Results	2
	1.3	PFAS Investigations Timeline 2008 – 2019 and development of guideline	10
	1 1		∠ا۱۷
	1.4		14
	1.5	Scope of works	14
	1.0		10
2.	Asse	essment area details	1/
	2.1	Description of assessment area	1/
	2.2	Geology and hydrogeology	1/
3.	Asse	essment criteria	21
	3.1	Groundwater	21
	3.2	Soil	22
4.	Meth	nodology	23
	4.1	Groundwater well installation methodology	23
	4.2	Groundwater monitoring and sampling methodology	24
	4.1	Soil sampling methodology	24
	4.2	Departures from the SAQP	25
	4.3	Work health and safety	25
	4.4	Laboratory analysis program	25
	4.5	Water use survey	26
5.	Resi	ılts	28
	5.1	Groundwater	28
	5.2	Soil	30
	5.3	Water use	32
6.	Qua	ity Assurance and Quality Control	35
7.	Disc	Discussion	
	7.1	Variability between Sampling Rounds	36
	7.2	PFAS in soil adjacent monitoring well P44	37
	7.3	Distribution of PFAS impacted Groundwater	37
	7.4	Off-airport water use on other properties	38
	7.5	Conceptual Site Model (CSM)	39
	7.6	Data Gaps	41
		Uncertainty assessment	41
	7.7	41	
8.	Cond	clusions	42
9.	Refe	rences	44

10.	Analytical Results Tables	.45
11.	Figures	.46

Table index

Table 1-1	Summary of Previous Investigations	3
Table 1-2	Summary of fieldwork program	15
Table 2-1 S	Summary of Wells Reviewed – Off-site Parafield Airport (EP 2018a)	19
Table 2-2	Summary of local hydrogeology	20
Table 3-1	Four step process for determining harm to groundwater	21
Table 3-2	Adopted PFAS interim screening criteria (Groundwater)	22
Table 3-3	Adopted PFAS screening criteria (Soil)	22
Table 4-1	Groundwater well installation methodology	23
Table 4-2	Groundwater monitoring and sampling methodology	24
Table 4-3	Soil sampling methodology	24
Table 4-4	Laboratory analytical schedule	25
Table 4-5	Profile of key characteristics of Mawson Lakes and Parafield Gardens	26
Table 5-1	Summary of groundwater analytical results	29
Table 5-2 E	Invironmental Projects Resampling Results	
Table 5-3	Summary of soil analytical results	32
Table 7-1	Conceptual Site Model (CSM)	39

Figures in Text

Figure 1-1 –	Investigation Process	.1
Figure 5-1	Source of water supply to dwelling/ building(s)	33
Figure 5-2	Source of water supply for non-household/ outdoor use	33

Figures Index

- Figure 1 Site Location Plan
- Figure 2 Groundwater Monitoring Well Locations
- Figure 3 PFOA and PFHxS / PFOS Exceedances
- Figure 4 Groundwater Contour Plan July 2019

Appendices

Appendix A - Groundwater Survey Data

Appendix B – Field Notes Appendix C – Registered Bore Search Appendix D – Well Permits Appendix E – Borehole Logs Appendix F – Calibration Certificates Appendix G – Laboratory Reports and COCs Appendix H – QA/QC Appendix I – Community Engagement Appendix J – Environmental Projects Report Appendix K – PFAS Timeline

1. Introduction

1.1 Background

Parafield Airport Limited (PAL) took over operations of Parafield Airport in May 1998 in a leasehold agreement with the Australian Government. Parafield Airport Limited (PAL) is pro-actively managing the response to per- and poly- fluoroalkyl substances' (PFAS)-related investigations at Parafield Airport based on guidance from Federal and State regulators including the Environment Protection Authority.

Historically, a PFAS containing firefighting foam called 3M Lightwater[™] was used for both operational and training purposes at Parafield from the early 1970s until 1986. This period of PFAS foam use at Parafield Airport is limited compared to many other Australian airports, where the use of 3M Lightwater[™] continued until 2003 and Ansulite[™] was then used until 2010.

The process undertaken in assessing potential risks associated with PFAS at Parafield Airport is depicted in Figure 1-1.

Figure 1-1 – Investigation Process

As a first step in the process, a qualitative risk assessment was undertaken on and off the airport to identify potential sources of PFAS contamination and the human and ecological receptors potentially impacted by them.

PAL then undertook groundwater and stormwater investigations to improve the understanding of the potential risks identified by the qualitative risk assessment. PAL focused their investigations on assessing potential risks to local residents. Given this focus on local residents, investigations targeted airport boundary locations, particularly those boundary locations with residential areas located down gradient.

Results of the groundwater and stormwater investigations and the qualitative risk assessment were then used by specialist environmental risk assessors to undertake a detailed on and off airport human health and ecological risk assessment (HHERA). In addition to providing an assessment of potential risks associated with PFAS contamination, the HHERA also identified a number of data gaps. PAL undertook further investigations to fill these data gaps and better understand the potential off-airport risks.

The HHERA was updated using the results of the further investigations and a project control group (PCG), including the South Australian (SA) Environment Protection Authority (EPA) and the Department of Infrastructure, Transport, Cities and Regional Development was established to assess potential risks and determine requirements for additional investigations.

Based on the updated HHERA, the PFAS PCG determined that an off airport groundwater investigation and groundwater use survey were necessary within Bridges Estate (Mawson Lakes) and an area within Parafield Gardens.

In November 2018 PAL engaged GHD Pty Ltd (GHD) to undertake groundwater bore use survey of residential and recreational properties adjacent to the southern boundary (Mawson Lakes) and the western boundary (Parafield Gardens) of Parafield Airport. PAL also engaged GHD to carry out further groundwater investigations within these off-site survey areas and on the airport grounds.

This report documents the methodology and findings of the water use surveys and groundwater sampling program that were undertaken on-site and in off-site areas to the west and southwest of the Parafield Airport between November 2018 and May 2019.

This report is subject to, and must be read in conjunction with, the limitations set out in Section 1.6 and GHD proposals dated 14 November 2018 and 6 March 2019.

1.2 Previous Investigations Results

1.2.1 General

The following previous environmental investigations have been undertaken at the Parafield Airport site and reviewed by GHD:

- Golder Associates (2016), Site History and Qualitative Risk Assessment of Perfluorinated Chemical Sources – Parafield Airport for Adelaide Airport Limited, Ref 1546945-002-R-Rev1, May 2016
- LBW / Environmental Projects (2016), Adelaide and Parafield Airports PFAS Investigation, 10 August 2016
- GHD Pty Ltd (2016a), Proposed Northern Adelaide Food Park (NAFP) Contamination Site Investigation for Adelaide Airport Limited, Ref 3318216, September 2016
- GHD Pty Ltd (2016b), Parafield Airport Groundwater Well Installation and Sampling Report for Adelaide Airport Limited, Ref 3318216, September 2016

- GHD Pty Ltd (2016c), Proposed Northern Adelaide Food Park Groundwater Investigation for Adelaide Airport Limited, Ref 3318216, December 2016
- Golder Associates (2017), Groundwater Sampling Analysis, Parafield Airport, South Australia for Adelaide Airport Limited, Ref 1784148-001-R-Rev2, 10 August 2017
- GHD Pty Ltd (2018), Proposed Northern Adelaide Food Park Well Installation and Groundwater Monitoring Report for Adelaide Airport Limited, Ref 3318216, January 2018
- Environmental Projects (2018a), Adelaide and Parafield Airports Desktop Review of Current Off-airport Groundwater Use for Adelaide Airport Limited, 7 March 2018
- Environmental Projects (2018b), Parafield Airport Monitoring Well Installation and Sampling for Adelaide Airport Limited, 6 June 2018
- Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield Airport for Adelaide Airport Limited, Ref AALPA/17/R001, 7 August 2018
- Golder Associates (2018) Adelaide and Parafield Airport Groundwater Monitoring for Adelaide Airport Limited, 12 September 2018

1.2.2 Summaries of Previous Investigation

Summaries of the previous investigations undertaken at the site are provided in Table 1.1. Summary of results of historical investigations is provided in Section 10.

Table 1-1 Summary of Previous Investigations

5	5
Item	Content
Golder Associates (20 Chemical Sources – F	016), Site History and Qualitative Risk Assessment of Perfluorinated Parafield Airport
Scope of work	 A desktop site history assessment and a qualitative assessment of potential human health and ecological risk associated with identified PFAS sources at Parafield Airport and surrounding properties was undertaken for the purpose of developing an initial understanding of potential PFAS related risks which can be used to guide future intrusive site investigations in areas of potential elevated risk. The scope of works included: A literature review of known PFAS uses in industry, particularly uses on airports and industrial operations A kerbside inspection of properties in the immediate vicinity of the airport to assess likely nature of operations on these properties A review of Sands and McDougall reverse directories to identify owners and activities historically undertaken on adjacent properties A review of available regional and site-specific hydrogeological information and groundwater bore search A review of historical fire-fighting training records A search of the Safework SA Dangerous Goods register to assess records of potential former or current chemical storage on the site A review of AAL tenant responses to a survey of current PFC storage and use, as provided by AAL.
Findings	 Nine onsite areas of interest were identified to contain potential PFAS sources, which could have the potential to pose a risk to human health or the environment if released into the environment (via leak and/or spill, leading to PFC migration beneath the site). These properties are shown on Golder (2016) Figure 2 - Site Layout & Features of Interest (attached in Figures at the end of the report) and included: Aeroservices Pty Ltd - potential PFC containing hydraulic oil storage in Hangar building

Item	Content
Item	 Content Flight Training Adelaide - potential PFC containing hydraulic oil storage Stark Aviation - potential PFC containing hydraulic oil storage in fuel depot North Former Fire Fighting Training Ground - historical disposal of sump oil and waste hydraulic fluids West Former Fire Fighting Training Ground - historical fire-fighting activities South-East Former Fire Fighting Training Ground - historical fire-fighting activities Former Fire Station – historical storage of Aqueous Film Forming
	 Foam (AFFF)PFH Former Landfill Bunker - identified impacts to soil from historical disposal of fire-fighting training waste and possible disposal of AFFF-impacted waste incl. hydraulic fluid Former Landfill – disposal of waste materials including drums of tar/oil, paints and solvents, demolition waste, scrap metals and timber, tyres, electrical cables and general rubbish; PFCs containing waste including waste hydraulic fluid, coated metals, treated paper and packaging. The significance of potential on-site risks ranged from low to moderate,
	 with two properties (Former Fire Station and Former Landfill recording "moderate' risk. Thirteen (13) offsite properties of interest (within 500 m of the site) were identified to contain potential PFAS sources. Based on their distance from the site (greater than 100 m) and/or their cross gradient location from the site, most properties of interest were not considered to pose a significant risk to the airport site. Three (3) offsite properties were identified as posing a potential concern, with respect to potential PFAS releases that may impact the airport site through migration within groundwater. These properties included: Stevenson AC - storage and use of metal plating, coating additives, cleaning products, paper and packaging containing PFC Adelaide All Clean Carpet Cleaning – storage and use of cleaning products, stain repellents, paper and packaging containing PFC Blacksilver Painters - storage and use of stain repellents, cleaning products, paper and packaging.
LBW / Environmental	Projects (2016), Adelaide and Parafield Airports PFAS Investigation,
Scope of work	 The objective of this investigation was to assess off airport risks from PFAS, with reference to the regulatory environment. In March 2016, the following scope of works was completed: Area A (up-hydraulic gradient zone located along the eastern boundary) gauging and sampling of two existing groundwater monitoring wells BGW1 and BGW2 Area B (down-hydraulic gradient zone located along the western boundary): gauging and sampling of well P8 in the western corner gauging and sampling of four newly installed monitoring wells (installed by AAL) GWP1PFC – GWP4-PFC. Analysis of all groundwater (GW) samples for the 20 PFAS analytical suite
Findings and Recommendations	 PFAS concentrations were recorded in all GW samples except sample BGW1. All samples had concentrations below adopted criteria of enHealth Interim National Guidance on human health reference values for

Item	Content
	 (PFOS+PFHxS) for Drinking Water (0.5 ug/L) and Recreational Water Quality Guidelines (5 ug/L). Area A - PFAS concentrations were detected in BGW2, one of two background wells located up-hydraulic gradient of the airport, suggesting a possible off-airport source. This concentration may be due to historic application of AFFF near up-gradient areas around the eastern airport boundary. The scope of investigations couldn't conclusively determine the source. Area B - Wells located near the western airport boundary, down-gradient of sites of potential historic AFFF use, reported PFAS concentrations below Australian drinking water criteria and well below draft ecological criteria, suggesting that on-airport activities may have contributed to PFAS contamination. Depth to groundwater indicated a low potential for groundwater to be interacting with surface water at Parafield airport. The following was recommended: re-sampling of wells sampled using low flow methodology inclusion of PFAS assessment into the annual groundwater monitoring program.
Summary	The findings of this report initiated further groundwater investigations of PFAS in this portion of the Airport.
GHD (2016a), Propose	ed Northern Adelaide Food Parl Contamination Site Investigation
Scope of work	 This investigation was undertaken in June 2016 at the proposed Parafield Airport Cross Keys Precinct, Northern Adelaide Food Park (NAFP), which was an undeveloped grassland immediately north of Elder Smith road. This investigation was undertaken to assess possible impacts from the former landfill located at the centre of the NAFP site and potentially contaminants associated with fire training, which occurred adjacent to the site. The scope of works included: Desktop site history review of the current and past site activities of potential concern Assessment of contamination status of soil and groundwater at the site through a grid based sampling program Assessment of contamination status of the development areas for the purpose of identifying significant contamination, threatening future development prospects Providing baseline data and initial waste classification of soils encountered Collection of 65 grid based soil samples across the NAFP site up to 3 m below ground level (bgl) and laboratory analysis of CEC, metals, hexavalent chromium, PAH, OCP, OPP, TRH, BTEXN, VOC and PFAS Groundwater sampling from three (3) existing site monitoring wells (P2, P3 and P6) located in the south-western part of the airport and laboratory analysis of PFAS, TRH, BTEXN, PAH, pH field screening, dissolved metals and the Victorian EPA suite.
Findings	 The main findings of the contaminated land investigation were as follows: The results of the desktop assessment indicated that the site was used as an airport since 1927. Prior to this the site was agricultural land. Soil was predominantly reworked and natural material to the depth of excavation; two locations identified former landfill with building rubble and fill material. Concentrations of manganese in two (2) soil samples and barium in one sample exceeded the Airports area of environmental significance guideline values. Asbestos was not detected in surface soil samples analysed. Standing water level of groundwater was 2.5 - 2.8 m bgl and groundwater was inferred to be flowing in a south westerly direction.

Item	Content
	 The environmental value for groundwater protection was fresh water aquatic ecosystems based on potential water use and salinity. Groundwater returned results below the adopted criteria with the exception of chromium (III and VI) (P3), mercury (P3), molybdenum (P2), selenium (P3 and P6), zinc (P2 and P6), PFOS (P3 and P6) and PFHxS (P6).
Recommendations	Based on the above findings further investigations for PFOS, PFOA and PFHxS were recommended if construction was likely to impact groundwater.
Summary	The findings of this report initiated further groundwater investigations of PFAS in this portion of the Airport.
GHD Pty Ltd (2016b),	Parafield Airport Groundwater Well Installation and Sampling Report
Scope of work	 A groundwater well installation and monitoring round was conducted in August 2016 to further investigate groundwater PFAS contamination previously identified at the NAFP site and to assess the possible up gradient and cross gradient groundwater PFAS contamination which might have impacted the proposed North Adelaide Food Park Precinct. The scope involved the following: Installation of seven (7) new groundwater wells (P9 to P11, GWP5_PFC, GWP6_PFC, BGW3 and BGW4) across the airport. Sampling of the seven (7) new groundwater wells and two (2) existing groundwater wells P6 and P8. Submission of groundwater samples for laboratory analysis of PFOS, PFCA, 6:2 FtS, 8:2 FtS, TDS, major anions/cations, metals, TOC, PAH, TRH, BTEX, hexavalent chromium and nutrients. Collection of 73 soil samples from soil boreholes drilled during the well installation to a maximum depth of 8.5 m bgl. Submission of selected soil and groundwater samples for laboratory analysis of a combination of PFOS, PFOA, 6:2 FtS, 8:2 FtS, PAH, TRH, BTEX, metals, TOC, TIC, major anions/cations and pH. Assess the range, location and potential for contaminants to be present in groundwater beneath the proposed Northern Adelaide Food Bank Assess the concentrations of PFAS in groundwater beneath the proposed Northern Adelaide Food Park.
Findings	 Soil pH ranged between 7.9 and 9.1, indicating alkaline nature of soil. All metal, TRH/BTEX, PAH and PFAS results in soil were reported below the adopted guideline levels. Groundwater was encountered at depths of 0.7 m to 8.5 m bgl. The SWL of the groundwater monitoring wells during the August 2016 GME ranged between 0.4 m bToC (P10) and 7.9 m bToC (GWP5-PFC). TDS results of the groundwater samples ranged from 1,310 mg/L to 8,840 mg/L, indicating high salinity. Dissolved chromium (III + VI) concentrations exceeded the Airports (1997) Fresh Water Guidelines in two samples (BGW3, 0.01 mg/L and P78, 0.015 mg/L). Dissolved copper concentrations exceeded the Airports (1997) Fresh Water Guidelines in eight samples (BGW3, BGW4, GWP5-PFC, P10, P11, P6, P8 and P9). Total iron concentrations exceeded the Airports (1997) Fresh Water Guidelines in four samples (BGW3, BGW4, GWP5-PFC, and P11). Dissolved zinc concentrations exceeded the Airports (1997) Fresh Water Guidelines in seven samples (BGW3, BGW4, GWP5-PFC, P10, P11, P8 and P9).

Item	Content
	 PFOS exceeded the adopted EISL (toxicity effects on aquatic organisms) in one sample (GW6-PFC, 72.8 µg/L). PFOS exceeded the adopted HISL (drinking water) in two samples (P11, 3.44 µg/L and P6, 4.35 µg/L). PFOA exceeded the adopted HISL (consumption of fish) in two samples (P8, 0.01 µg/L and P9, 0.02 µg/L). PFOA exceeded the adopted HISL (consumption of fish) and HISL (drinking water) in one sample (GW6-PFC).
Summary	The findings of this report initiated further groundwater investigations of PFAS in this portion of the Airport to address identified data gaps and inform the contamination status of groundwater including sampling of GWP3_PFC located on the western boundary of the airport and proposed NAFP.
GHD Pty Ltd (2016c),	Proposed Northern Adelaide Food Park Groundwater Investigation
Scope of work	 A groundwater well installation and monitoring round was conducted in November 2016 at the Northern Adelaide Food Park to better inform the master planning for the Northern Adelaide Food Park and close out data gaps from the previous investigation. The scope of works included: Drilling, sampling, conversion and gauging of 10 soil bores into groundwater monitoring bores. Gauging and sampling of the new groundwater monitoring wells and the nine (9) existing groundwater monitoring wells. Soil samples were collected from each of the soil boreholes to a maximum depth of 8.5 m bgl. Groundwater samples were submitted for laboratory analysis of a combination of PFOS, PFOA, 6:2 FtS, 8:2 FtS, TDS, major anions/cations, metals, TOC, PAH, TRH, BTEX, hexavalent chromium and nutrients. Soil samples were submitted for laboratory analysis of a combination of PFOS, PFOA, 6:2 FtS, 8:2 FtS, PAH, TRH, BTEX, metals, TOC, TIC, major anions/cations and pH.
Findings	 The pH of the soil ranged between 7.3 and 9.1. All metal results in soil were reported below the adopted guideline values. All TRH/BTEX results in soil were reported below the adopted guideline levels except TRH C10 – C40 in one surface soil sample from location P12, which was considered be a localised occurrence. All PAH results in soil were reported below the adopted guideline levels. All PFAS results in soil were reported below the adopted guideline levels. All PFAS results in soil were reported below the adopted guideline levels. The SWL of the groundwater monitoring wells ranged between 0.622 m bTOC (P10) to 2.488 m bTOC (BGW3). TDS results of the groundwater samples ranged from 1,104 mg/L to 25,115 mg/L. Dissolved chromium (III + VI), copper and zinc concentrations exceeded the Airports (1997) Fresh Water Guidelines at several locations. Dissolved copper concentrations exceeded the Airports (1997) Fresh Water Guidelines at 14 locations (P6, P8-P11, P15, P17-P21, BGW3, BGW4 and GWP5_PFC). Dissolved zinc concentrations exceeded the Airports (1997) Fresh Water Guidelines at 16 locations (P1, P8-P11, P13-P15, P17-P21, BGW3, BGW4 and GWP5_PFC). Dissolved zinc concentrations exceeded the NEPM GIL for Fresh Water at nine locations (P8-P11, P13, P15, P20, BGW3 and GWP5_PFC). All TRH/BTEX and PAHs results in groundwater were reported below the adopted guideline levels.

Content
 PFHxS + PFOS concentrations exceeded the enHealth interim human health drinking water guideline at 11 locations (P1, P3, P6, P11 - P16, P18 and GWP6_PFC). PFHxS + PFOS concentrations exceeded the enHealth interim human health recreational water guideline at nine locations (P1, P6, P11 - P13, P15, P16, P18 and GWP6_PFC). PFOA concentrations exceeded the Airservices HISLs consumption of fish guideline at three locations (P12, P13 and GWP6_PFC). PFOA concentrations exceeded the Airservices HISLs drinking water guideline at three locations (P12, P13 and GWP6_PFC). PFOS concentrations exceeded the Airservices HISLs consumption of fish guideline at three locations (P12, P13 and GWP6_PFC). PFOS concentrations exceeded the Airservices HISLs consumption of fish guideline at 15 locations (P1, P3, P6, P8-P16, P18, BGW3 and GWP6_PFC). PFOS concentrations exceeded the Airservices HISLs drinking water guideline at 11 locations (P1, P3, P6, P11-P13, P14-P16, P18, and GWP6_PFC).
Based on PFAS contamination identified in soils and groundwater at the
 site, the CSM was developed as follows: There was unlikely to be a human health risk from the identified contamination for onsite workers for the proposed land use. There was a potential risk to construction workers during site development, however this could be mitigated by planning of excavation locations and good hygiene practices. The main risk was considered to be through incidental ingestion of water or soils. Dermal exposure has not been identified as a dominant exposure pathway for PFAS. Treatment and disposal of PFAS contaminated soils was considered to be an option and as soil contamination was limited to the soil/groundwater interface in the vicinity of the adjacent historic fire training ground, excavated material could be managed to separate contaminated/non contaminated material, reducing overall soil management or disposal costs. Treatment and disposal of extracted groundwater (most likely for dewatering excavations) was considered possible. Any water extracted during the construction phase needs to be managed in accordance with current best practice to ensure no release to the environment of PFAS contaminated groundwater. A soil and dewatering management plan in accordance with the construction management plan (CEMP) could be developed for the site to mitigate any environmental impacts from the construction site.
The findings of this investigation initiated a limited sampling round of selected monitoring wells to confirm PFAS concentrations at these locations
017), Groundwater Sampling Analysis, Parafield Airport
The objectives of the investigation conducted in August 2017 was to assess the groundwater wells located at the peripherals of the proposed NAFP site. The scope of investigation included sampling of groundwater from five (5) existing groundwater wells (P11, P14, P15, P18 and GWP3_PFC) and laboratory analysis of PFAS and heavy metals.
 No physical evidence of contamination (i.e. hydrocarbon odour, sheen) or presence of non-aqueous phase liquid was detected in groundwater. Elevated concentrations of the following dissolved-phase contaminants exceeded the adopted screening guidelines in one or more monitoring wells: zinc in the five monitoring wells assessed cadmium and lead in one monitoring well (P11)

Item	Content		
	 chromium in one monitoring well (P15) PFOS and PFHxS was reported in four monitoring wells (P11, P14, P15 and P18). 		
Summary	The resampling event showed some temporal fluctuations in PFAS concentrations in groundwater at some locations compared with the previous monitoring round.		
GHD Pty Ltd (2018), P Groundwater Monitor	roposed Northern Adelaide Food Park Well Installation and ing Report		
Objectives and Scope of work	 Groundwater monitoring well installation and sampling event was conducted in January 2018 on the southern portion of Parafield Airport in order to assess the contamination status of soil and groundwater and geotechnical conditions within the proposed Enterprise Precinct, to inform the proposed development. The scope included: The drilling and environmental and geotechnical sampling of 11 soil bores to depths ranging between 4.5 m and 5.7 m bgl. All soil bores were converted to groundwater monitoring wells (P22 to P32). Sampling of 11 new groundwater wells and 13 existing wells. Laboratories analysis of soil samples for a combination of Suite 28 PFAS, TRH, BTEXN, Metals and PFAS Leachability test. Laboratories analysis of groundwater samples for metals, PFAS, TRH, BTEXN, major anions/cations, TDS and TOC. 		
Findings	 Soils across the site were observed to consist of natural clayey material with some limited bands of coarser sandy and gravelly material in localised areas. Chemical concentrations in soil were either below the laboratory LOR or below the nominated assessment criteria. Leachable concentrations of PFAS in soil were below the laboratory LOR. Concentrations of PFAS exceeded the nominated site criteria at 10 of the existing wells (GWP6_PFC, P1, P6, P10, P12 to P16 and P18) and eight of the newly installed wells (P24 to P26 and P28 to P32) Concentrations of PFAS compounds were reported in groundwater at concentrations that may pose an unacceptable risk to sensitive receptors onsite and/or offsite. 		
Conclusions and Recommendations	 As the current lateral and vertical extent of PFAS impacts have not been delineated down the hydraulic gradient, the risk profile of offsite sensitive receptors have not be confirmed at this stage. The PFAS impacted groundwater underlying the site was not considered to impact the proposed future development providing: excavation works, undertaken as part of the development, did not extend into saturated soils associated with the first quaternary aquifer groundwater was not extracted for any beneficial uses as part of future site operations. 		
Summary	The elevated PFAS concentrations identified on the southern and western boundary of the airport instigated further offsite investigations including an assessment of groundwater use.		
Environmental Project Off-airport Groundwa	Environmental Projects (2018a), Adelaide and Parafield Airports Desktop Review of Current Off-airport Groundwater Use		
Scope of work	 A desktop review of off-site groundwater use was conducted to allow evaluation of risk to off-site users from potential groundwater contaminant migration. This included: Previous investigations desktop review 		

 Department of Environment, Water and Natural Resources (DEWNF licensed bore information considering more detailed data such as we construction logs and geology where available Historical aerial photographs to establish likely location of wells in th current urban landscape Locality Inspection to assess likelihood of groundwater extraction an use, where warranted Any likely or known managed aquifer recharge (MAR) activities near on airport that might affect hydrogeology EPA library search for any reports that may be relevant to the review Findings Approximately 95 wells were located within a 1 km radius of the alty a subset of which were located within a proximately 800m down-hydraulic gradient of the Parafield Airport (wester) to south west direction). Based on the data available and on probability assumptions such as example older wells being no longer operational due to casing failur no wells were found to be likely to be present within 800m of the Air and in a down hydraulic gradient direction, with potential to be impacted by airport activities. Environmental Projects (2018b), Parafield Airport Monitoring Well Installation and Sample determine the baseline groundwater wells ensults indicating the size of concentrations of a single groundwater well near the southern boundary of the site determine the baseline of PFAS Findings The scope undertaken in June 2018 included installation and sampli of a single groundwater well near the southern boundary of the site determine the baseline groundwater setuls indicating that the groundwater at location PFAS NEMP 2015 health-based guideline for drinking and recreational waters. Findings The scope undertaken in June 2018 included installation and sampli of a single groundwater well near the southern boundary of the site determine the baseline groundwater at location. Samples were submitted f	Item	Content	
Findings • Approximately 95 wells were located within a 1 km radius of the airp a subset of which were located within approximately 800m down-hydraulic gradient of the Parafield Airport (westerly to south west direction). • Based on the data available and on probability assumptions such as example older wells being no longer operational due to casing failur no wells were found to be likely to be present within 800m of the Airport (westerly to south west direction). • Recommendations • The review also suggested that there were no wells likely to be present within 800m of the Airport and in a down hydraulic gradient direction, with potential to be impacted by airport activities. Environmental Projects (2018b), Parafield Airport Monitoring Well Installation and Sampl of a single groundwater well near the southern boundary of the site 1 determine the baseline groundwater condition at that location. Samples were submitted for laboratory analysis of PFAS Findings A baseline of contamination status has been established based on wor undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: • PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. • Groundwater samples collect at GW3_PFC and P33 initiated further offsite investigations including a groundwater bore use survey and offsi delineation of PFAS i groundwater. Environmental Projects (2018), Human Health and Ecological Risk Assessment for PFAS at Parafield Airport		 Department of Environment, Water and Natural Resources (DEWNR) licensed bore information considering more detailed data such as well construction logs and geology where available Historical aerial photographs to establish likely location of wells in the current urban landscape Locality inspection to assess likelihood of groundwater extraction and use, where warranted Any likely or known managed aquifer recharge (MAR) activities near or on airport that might affect hydrogeology Identification of any groundwater extraction activities (such as irrigation of the Adelaide Shores golf course) that might affect hydrogeology EPA library search for any reports that may be relevant to the review. 	
Recommendations The review also suggested that there were no wells likely to be press within 800m of Parafield Airport in a down hydraulic gradient direction with potential to be impacted by airport activities. Environmental Projects (2018b), Parafield Airport Monitoring Well Installation and Sampli of a single groundwater well near the southern boundary of the site 1 determine the baseline groundwater condition at that location. Samples were submitted for laboratory analysis of PFAS Findings A baseline of contamination status has been established based on wor undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. Groundwater samples collected at GW3_PFC and P33 reported PF/concentrations that exceeded the adopted criteria PFAS NEMP 2013 Health Drinking Water. Mercury and zinc concentrations exceeding the AEPR 1997 criteria freshwater. Summary The elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsid elineation of PFAS in groundwater. Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS at Parafield Airport was conducted. The scope of work included: The essessment of risks to human health associated with potential 	Findings	 Approximately 95 wells were located within a 1 km radius of the airport, a subset of which were located within approximately 800m down-hydraulic gradient of the Parafield Airport (westerly to south west direction). Based on the data available and on probability assumptions such as for example older wells being no longer operational due to casing failure, no wells were found to be likely to be present within 800m of the Airport and in a down hydraulic gradient direction, with potential to be impacted by airport activities and possibility of being in active use. 	
Environmental Projects (2018b), Parafield Airport Monitoring Well Installation and Sample Scope of work The scope undertaken in June 2018 included installation and sample of a single groundwater well near the southern boundary of the site of determine the baseline groundwater condition at that location. Samples were submitted for laboratory analysis of PFAS Findings A baseline of contamination status has been established based on wor undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. Groundwater samples collected at GW3_PFC and P33 reported PF/concentrations that exceeded the adopted criteria PFAS NEMP 2013 Health Drinking Water. Mercury and zinc concentrations exceeding the AEPR 1997 criteria freshwater. Summary The elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsi delineation of PFAS in groundwater. Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield Airport Scope of work A human health and ecological risk assessment (HHERA) relating to the presence of PFAS at Parafield Airport was conducted. The scope of work included: The assessment of risks to human health associated with potential 	Recommendations	• The review also suggested that there were no wells likely to be present within 800m of Parafield Airport in a down hydraulic gradient direction, with potential to be impacted by airport activities.	
Scope of work• The scope undertaken in June 2018 included installation and sampli of a single groundwater well near the southern boundary of the site of determine the baseline groundwater condition at that location. • Samples were submitted for laboratory analysis of PFASFindingsA baseline of contamination status has been established based on wor undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: • PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. • Groundwater samples collected at GW3_PFC and P33 reported PFA concentrations that exceeded the adopted criteria PFAS NEMP 2014 Health Drinking Water. • Mercury and zinc concentrations exceeding the AEPR 1997 criteria freshwater.SummaryThe elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsi delineation of PFAS in groundwater.Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield AirportScope of workA human health and ecological risk assessment (HHERA) relating to th presence of PFAS at Parafield Airport was conducted. The scope of work included: • The assessment of risks to human health associated with potential	Environmental Project	ts (2018b), Parafield Airport Monitoring Well Installation and Sampling	
FindingsA baseline of contamination status has been established based on wor undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: • PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. • Groundwater samples collected at GW3_PFC and P33 reported PF/ concentrations that exceeded the adopted criteria PFAS NEMP 2014 Health Drinking Water. • Mercury and zinc concentrations exceeding the AEPR 1997 criteria freshwater.SummaryThe elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsi delineation of PFAS in groundwater.Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield AirportScope of workA human health and ecological risk assessment (HHERA) relating to th presence of PFAS at Parafield Airport was conducted. The scope of work included: • The assessment of risks to human health associated with potential	Scope of work	 The scope undertaken in June 2018 included installation and sampling of a single groundwater well near the southern boundary of the site to determine the baseline groundwater condition at that location. Samples were submitted for laboratory analysis of PFAS 	
SummaryThe elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsi delineation of PFAS in groundwater.Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield AirportScope of workA human health and ecological risk assessment (HHERA) relating to th presence of PFAS at Parafield Airport was conducted. The scope of work included: 	Findings	 A baseline of contamination status has been established based on works undertaken, with the laboratory analysis results indicating that the groundwater at location P33 had concentrations of: PFOS compounds and combined PFHxS + PFOS concentrations exceeding the PFAS NEMP 2018 health-based guideline for drinking and recreational waters. Groundwater samples collected at GW3_PFC and P33 reported PFAS concentrations that exceeded the adopted criteria PFAS NEMP 2018 Health Drinking Water. Mercury and zinc concentrations exceeding the AEPR 1997 criteria for freshwater. 	
Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield Airport Scope of work A human health and ecological risk assessment (HHERA) relating to the presence of PFAS at Parafield Airport was conducted. The scope of work included: • The assessment of risks to human health associated with potential	Summary	The elevated PFAS concentration reported at well P33 initiated further offsite investigations including a groundwater bore use survey and offsite delineation of PFAS in groundwater.	
 Scope of work A human health and ecological risk assessment (HHERA) relating to the presence of PFAS at Parafield Airport was conducted. The scope of work included: The assessment of risks to human health associated with potential 	Environmental Risk Sciences Pty Ltd (2018), Human Health and Ecological Risk Assessment for PFAS: Parafield Airport		
direct contact exposures with PFAS compounds in soil, groundwater and surface water. This included consideration of airport workers who may come into direct contact with PFAS impacted soil or water and any airport tenants.	Scope of work	 A human health and ecological risk assessment (HHERA) relating to the presence of PFAS at Parafield Airport was conducted. The scope of works included: The assessment of risks to human health associated with potential direct contact exposures with PFAS compounds in soil, groundwater and surface water. This included consideration of airport workers who may come into direct contact with PFAS impacted soil or water and any airport tenants. 	

Item	Content
	 Qualitative assessment of risks to on-site environments (aquatic and terrestrial) where relevant. Identification of data gaps to assist in refining the assessment of risk or in considering additional risk management measures. Preliminary evaluation of the potential risks to human health and the environment in off-site areas including exposure to public users of off-site bores and surface water and impacts to the aquatic environment from PFAS impacts potentially sourced from the site. For the off-site area: identification of exposure pathways and off-site receptors of concern, any recommendations for additional assessment, and the provision of an updated conceptual site model.
Findings	 On-site findings were as follows: Risk to workers who may contact PFAS contaminated media in the south-west corner of the site were low and acceptable. With the exception of Vernal Pools Conservation Zone (VPCZ) and some remnant indigenous vegetation outside of the conservation zone, the site had limited ecological value and lacks sensitive environmental receptors. Off-site findings were as follows: Concentrations of PFOS + PFHxS and PFOA in groundwater on the western and southern boundary of the site, and in downstream surface water sampling locations, were below the screening guidelines for incidental contact, which was relevant to the use of surface water bodies down gradient of the site for secondary contact recreation. With the exception of locations P18 and SWP2 / SW-DS1, concentrations of PFOS and PFOA in groundwater or surface water that may be discharging off-site were below the Draft ANZECC 80%, 90% and 95% levels for the protection of freshwater systems. Other issues: The Stormwater Harvesting Facility appeared to have been leased to the City of Salisbury for the purpose of collecting and cleansing stormwater before injecting it into underground aquifers and then reticulating the water for irrigation and use by local businesses, however this was outside the scope of the HHERA. Based on the available information the land use within the NAFP was indicated to be commercial / industrial setting, however confirmation was required that no more sensitive land uses including agricultural or good production land uses were proposed.
Recommendations	 It was recommended that AAL initiate discussions with SA EPA to confirm the relevant protection level for ecosystems within Mawson Lakes and Dry Creek. If the 90%, 95% or 99% protection levels were determined to be relevant, a higher level (quantitative) environmental risk assessment could then be undertaken to further assess risks. PFAS risk issues were recommended to be considered during the future planning, design, commissioning and/or use of the Stormwater Harvesting Facility by AAL and City of Salisbury (as appropriate). More detailed information was required relating to the proposed land use within the NAFP.

Current GHD investigations followed previous environmental investigations which identified elevated PFAS levels in groundwater at monitoring wells located airside on the western boundary of the airport and landside in the south western extent of the airport, respectively.

The locality of the assessment areas are presented in Figure 1 at the end of this report.

1.3 PFAS Investigations Timeline 2008 – 2019 and development of guideline values

This section provides a summary of the timeline of PFAS Investigations and development of PFAS guidelines from 2008 to 2019, as shown in a diagram in Appendix K and summarised below:

- From 2009 to 2012 Airservices Australia and the Department of Defence encouraged regulators to develop a set of Australian guidelines for PFAS.
- In August 2009 PFOS was added to Annex A of the Stockholm Convention on Persistent Organic Pollutants.
- In August 2010 Airservices advised the SA EPA of the presence of PFAS contamination at Adelaide Airport via the national roadshow.
- In February 2012 PFAS was identified as a first-tier priority contaminant at the Cooperative Research Centre for Contamination and Remediation of the Environment (CRC CARE) forum of regulators and end users (including Airservices).
- Between 2013 and 2015 the CRC CARE Policy Advisory Committee (PAC) considered the available PFAS data and guidance within Australia and overseas and established a PFAS Project Advisory Group (PAG) for existing PFAS guidance and guidance needs. The PAC then established a PFAS Technical Working Group to oversee the development of PFAS guidance.
- In March 2015 a meeting was conducted between CRC CARE PFAS TWG, Airservices and AAL representatives, where the Adelaide Airport Preliminary PFAS report was reviewed.
- In June 2015 Airservices and GHD Managing PFC [PFAS] Contamination at Airports developed the Interim Contamination Management Strategy and Decision Framework.
- Following the emergence of PFAS as a global pollutant of concern, and the development of the Decision Framework and the guidelines, in February 2016 AAL engaged Golder to undertake a Site History and qualitative risk assessment at Parafield Airport in order to develop an understanding of the potential PFAS related risks present on and off of site and to guide future site investigations at areas of elevated potential risk. This desktop review identified a number of potential onsite and offsite locations of PFAS sources which may pose a risk to human health or the environment if released.
- In May 2016 AAL commissioned Golder Associates to conduct a qualitative assessment of
 potential human health and ecological risk associated with identified PFAS sources at
 Parafield Airport and surrounding properties. A number of on-site properties were identified to
 contain potential PFAS sources, which posed potential risk rating of low to moderate. A
 number of off-site properties were identified to contain potential PFAS sources however were
 not considered to pose significant risk due to location and distance from site.
- In June 2016 Interim PFAS health based guideline values were released by enHealth (PFOS drinking water guideline value 0.5 ug/L).
- In August 2016 AAL provided a briefing to SA EPA on the findings of the Golder (2016) desktop Qualitative Risk Assessment for the Adelaide Airport, which identified several medium and high risk potential PFAS source areas which have the potential to pose a risk to human health or the environment if released. These included current and historical fire training areas and former onsite landfill.
- In June 2016 GHD was commissioned by AAL to undertake an investigation for the proposed Parafield Airport Cross Keys Precinct, Northern Adelaide Food Park (NAFP) located in the southern portion of the Parafield Airport Precinct, to inform the master planning phase of the precinct and to provide a baseline investigation for future developments. The desktop study

indicated that the site had been in use as an airport since 1927, and was agricultural land prior to this. The soil and groundwater investigations showed some minor statistically insignificant exceedances for metal contamination in the soil. Groundwater results showed exceedances for some metals, PFOS and PFHxS, concluding that PFAS may require further investigation if construction was likely to impact groundwater. The findings of this report initiated further groundwater investigations of PFAS in this portion of the Airport.

- In August 2016 further groundwater investigations were undertaken by GHD to assess the extent of PFAS groundwater contamination identified at the site, and any associated impact to the proposed NAFP plan. While the soil investigation reported PFAS levels below the adopted guidelines, the GME of a total of 9 wells (7 newly installed wells and 2 existing) showed exceedances of PFOS and PFOA above the adopted drinking water guidelines.
- In November 2016 GHD conducted an additional groundwater well installation and GME to further assess the extent of PFAS impacts in the groundwater beneath the proposed NAFP, in particular, relating to the former fire training areas. PFAS contamination was again identified in soils and groundwater at the site. It was concluded that there was unlikely to be a human health risk from the identified contamination for onsite workers for the proposed land use, however there was a potential risk to construction workers during site development, which could be mitigated through planning of excavation locations and good hygiene practices. Similarly, correct management of the treatment and disposal of extracted contaminated soils and groundwater was recommended.
- Between January and April 2017 AAL engaged enRisks to use all Airservices and AAL data to undertake a Human Health and Ecological Risks Assessment, following which additional assessment was undertaken at both airports.
- In August 2017 Golder conducted a GME for groundwater wells located at the peripherals of the proposed NAFP site. Contamination levels above adopted guidelines were observed for some metals, PFOS and PFHxS.
- In January 2018 GHD conducted additional well installation and GME on wells located on the proposed NAFP site, to assess the status of soil and groundwater and geotechnical conditions to further inform the proposed development. Soil still consistently reported contamination levels below adopted criteria. PFAS concentrations in groundwater were found at concentrations which may pose an unacceptable risk to sensitive receptors both onsite and offsite. Notably, the groundwater PFAS impacts had not yet been delineated down the hydraulic gradient, resulting in an inability to confirm the risk to offsite sensitive receptors.
- In order to further assess groundwater use offsite, and identify the risk from potential groundwater contaminant migration to these potential offsite receptors, Environmental Projects was commissioned by AAL to conduct a desktop study. This study identified 95 wells present within a 1 km radius of Parafield airport, a subset of which were located 800 m down hydraulic gradient (west to south westerly direction). It was concluded that none of these wells were found to be likely to be present within 800 m from Parafield Airport in a down hydraulic gradient direction, with potential to be impacted by airport activities.
- In June 2018 AAL commissioned Environmental Projects to conduct an installation and GME of a single groundwater well near the southern boundary of the site to determine the baseline groundwater condition at that location. The results of the investigation indicated PFAS contamination above adopted PFAS NEMP 2018 Health Drinking Water guidelines.
- In August 2018 AAL commissioned Environmental Risk Sciences Pty Ltd to conduct a human health and ecological risk assessment relating to the presence of PFAS at Parafield Airport. The results indicated that risk to human health and ecological receptors were generally low, with some recommendations and need for further consideration.

- In October 2018 Airservices, AAL, DoIRDC and the SA EPA reviewed the results of on-airport investigations and determined the requirement for off-airport water surveys at Adelaide and Parafield Airports. A PFAS project control group (PCG) was established on the 30 October 2018 including GHD, SA Water, Salisbury Council, SA EPA, DoIRD, Airservices, SA Health and AAL.
- In November 2018 following the meeting with AAL, local councils and elected state / federal MPs regarding elevated PFAS results at the Adelaide and Parafield airports, AAL commissioned the Phase 1 groundwater use survey and off-airport investigations in the two areas down-hydraulic gradient at the properties adjacent to the southern boundary (Mawson Lakes) and the western boundary (Parafield Gardens) of Parafield Airport.
- The results were presented by GHD to the PCG in December 2018 and indicated PFAS impact in off-site wells located down-hydraulic gradient (south-west) of the airport.
- In January 2019, based on the results of the Phase 1 PFAS investigations, a Phase 2 groundwater survey and off-airport investigation was undertaken in the area located to the west of the airport at Parafield Gardens. The Phase 2 results were received and presented to PACC, PFAS PCG and AACC in February 2019. The results indicated PFAS impact in off-site wells extended further down-hydraulic gradient (south-west) of the airport.
- In March 2019 the PFAS NEMP 2.0 was released for consultation and the PFAS PCG meeting was conducted.
- Given the variability of the Phase 2 PFAS results groundwater resampling investigations were conducted by GHD in March 2019 and in May 2019 for the 12 on-site and off-site wells.

1.4 Project objective

The objective of the two phases of the environmental investigations was to further assess the extent of PFAS impacted groundwater off airport and down hydraulic gradient of existing monitoring wells GWP3-PFC located on the western boundary and well P33 located on the southern boundary. The study also examined water use at properties within the investigation areas.

1.5 Scope of works

The environmental investigation presented in this report consisted of two (2) phases.

Phase 1 investigation

- Installation of two on site monitoring wells (P34 and P35) and four off airport groundwater monitoring wells (P36 to P39).
- A groundwater monitoring event (GME) including gauging and sampling of one existing monitoring wells (P9) and six newly installed monitoring wells (P34 to P39).
- A groundwater use survey in water survey to the south (Area 1) and west (Area 2) of the airport. Area 1 includes properties to the north of Elder Smith Road and Mawson Lakes that border the south western boundary of the Airport. Area 2 includes properties along the Bardsley Avenue boundary to determine if any users of groundwater from unregistered well existed in these two areas.

Based on PFAS concentrations above the groundwater acceptance criteria (defined in Section 3.1) within the Parafield Gardens investigation area, the groundwater use survey and groundwater investigation were extended. Conversely, PFAS concentrations within the Bridges Estate (Mawson Lakes) survey area were below the GAC (defined in Section 3.1) and other than on-going monitoring, no further investigations were deemed necessary.

Phase 2 investigation

- Installation of one on-site monitoring well (P44) and four off airport groundwater monitoring wells (P40 to P43), to improve understanding of potential off-airport risks associated with the former waste oil sump on the airport (refer to Golder (2016) Figure 2 Site Layout & Features of Interest appended to this report).
- A GME including gauging and sampling of off-site monitoring wells P40 to P43 and on site monitoring well P44.
- Drilling and sampling of one (1) soil borehole using a hand auger (HA) located on site adjacent to P44 to determine if a localised PFAS source was responsible for the PFAS concentrations observed in monitoring well P44.
- A groundwater use survey of additional properties to the west of the airport boundary (Area 3) which include the Parafield Gardens Soccer and Sports Club, to Kellaway, Mailey and Woodfull and Bradman Streets to Hilditch Drive.
- A resampling GME was undertaken in March 2019, however due to some discrepancies in the laboratory data a subsequent resampling event was undertaken in May 2019. A limited sampling round on three selected wells was also undertaken by Environmental Projects in April 2019.

The monitoring well locations are presented in Figure 2. The survey areas are presented in Figure 3 at the end of this report.

The fieldwork program completed by GHD as part of this environmental investigation is summarised in Table 1-2.

Project Phase	Date	Activity
1	15 November 2018	Gauging and sampling of existing groundwater monitoring well, P9.
	16-21 November 2018	Door knock of 374 properties in water survey areas 1 (Mawson Lakes) and 2 (Parafield Gardens)
	28 – 29 November 2018	An underground service survey was undertaken by a professional service clearance contractor (Pipeline Technology Services) to establish the location(s) of underground services using DBYD (Dial-Before-You-Dig) plans. Six (6) groundwater monitoring wells (P34 to P39) were installed by Geochem Technologies Pty Ltd.
	6 December 2018	Gauging and sampling of the six (6) groundwater monitoring wells (P34–P39). Installed on the 28 and 29 November 2018. A survey of all newly installed wells to Australian Height Datum (AHDm) and Map Grid Australia (MGA) zone 54 in Geocentric Datum of Australia (GDA 94) was undertaken by SKS Surveys to enable the update of groundwater flow directions. Groundwater Survey Data is presented in Appendix A.
2	29 – 30 January 2019	An underground service survey was undertaken by a professional service clearance contractor (Pipeline Technology Services) to establish the location(s) of underground services using DBYD (Dial-Before-You-Dig) plans. Five (5) groundwater monitoring wells (P40 to P44) were installed by WB Drilling Pty Ltd. Door knock of 206 property occupants in survey area 3

Table 1-2 Summary of fieldwork program

Project Phase	Date	Activity
	07 February 2019	Gauging and sampling of the five (5) groundwater monitoring wells (P40 to P44. Gauging of existing groundwater monitoring wells GWP3_PFC, P9, P17, P18 and P33 to P39. A survey of all newly installed wells to AHDm and Map Grid Australia (MGA) zone 54 in Geocentric Datum of Australia (GDA 94) was undertaken by SKS Surveys to enable the update of
		groundwater flow directions. Groundwater Survey Data is presented in Appendix A.
	14 March 2019	Gauging and sampling of twelve (12) groundwater monitoring wells (GWP1-PFC, GWP2-PFC, GWP3-PFC, P9, P34, P35, P36, P40, P41, P42, P43 and P44). Drilling and sampling of one (1) soil borehole (HA).
	13 May 2019	Gauging and sampling of twelve (12) groundwater monitoring wells (GWP1-PFC, GWP2-PFC, GWP3-PFC, P34, P35, P36, P37, P40, P41, P42, P43 and P44).

1.6 Limitations

This report: has been prepared by GHD for Parafield Airport Limited and may only be used and relied on by Parafield Airport Limited for the purpose agreed between GHD and the Parafield Airport Limited as set out in Section 1.1 of this report.

GHD otherwise disclaims responsibility to any person other than Parafield Airport Limited arising in connection with this report. GHD also excludes implied warranties and conditions, to the extent legally permissible.

The services undertaken by GHD in connection with preparing this report were limited to those specifically detailed in the report and are subject to the scope limitations set out in the report.

The opinions, conclusions and any recommendations in this report are based on conditions encountered and information reviewed at the date of preparation of the report. GHD has no responsibility or obligation to update this report to account for events or changes occurring subsequent to the date that the report was prepared.

The opinions, conclusions and any recommendations in this report are based on assumptions made by GHD described in this report. GHD disclaims liability arising from any of the assumptions being incorrect.

The opinions, conclusions and any recommendations in this report are based on information obtained from, and testing undertaken at or in connection with, specific sample points. Site conditions at other parts of the site may be different from the site conditions found at the specific sample points.

Investigations undertaken in respect of this report are constrained by the particular site conditions, such as the location of buildings, services and vegetation. As a result, not all relevant site features and conditions may have been identified in this report.

Site conditions (including the presence of hazardous substances and/or site contamination) may change after the date of this report. GHD does not accept responsibility arising from, or in connection with, any change to the site conditions. GHD is also not responsible for updating this report if the site conditions change.

Assessment area details

2.1 Description of assessment area

The off airport investigation area targeted Parafield Gardens situated to the west of the airport boundary and The Bridges in Mawson Lakes situated to the south west of the airport boundary.

Phase 1 of the investigation targeted:

- Parafield Gardens; the assessment area extended to a distance of approximately 150 m from the western boundary of the airport and targeted the residential area bound by Bradman Road.
- Mawson Lakes; the assessment area extended to a distance of approximately 450 m from the south western boundary of the airport and targeted the residential area entitled The Bridges which is bound by Elder Smith Road.

Phase 2 of the investigation targeted:

Parafield Gardens; the assessment area was extended to a distance of approximately 500
m from the western airport boundary and targeted the residential area west of Bradman
Road.

The locality of the assessment areas are presented in Figure 1 attached to this report.

2.2 Geology and hydrogeology

2.2.1 Regional geology

The Adelaide 1:100,000 geological map sheet (South Australian Department for Mining and Energy, 2013) indicates that the investigation area is underlain by the Pooraka Formation. This is described as clay, sand and carbonate earth, silty sediments with gravel lenses.

2.2.2 Local geology

Based on observations made through this investigation, the site geology was found to contain varying combinations of clayey sand and fine - grain silty clay, often containing trace gravel and organic materials, from the surface to a depth of approximately 0.2 - 0.5 m. This was generally underlain with pale brown to red brown medium to high plasticity clay of –medium to high plasticity. The local geology was considered to be consistent with the regional geology.

The soil field observations are presented in the borehole logs contained in Appendix B.

2.2.3 Regional hydrogeology

The Parafield Airport and surrounding suburbs are classified under Zone 3 by the DWLBC Report (Gerges, 2006).

This zone contains 5 to 6 Quaternary aquifers and 3 to 4 Tertiary aquifers. The first and second Tertiary aquifers are the most productive and contain relatively low salinity levels. As such, the first Tertiary aquifer is the principal source of groundwater abstraction for industrial and recreational use in the area.

The regional groundwater flow direction is towards the south west (Gulf St Vincent).

A search of registered groundwater bores within a 2 km radius of the airport indicated the following:

• A total of 173 registered bores were present within the 2km zone.

- The status of the registered bores were:
 - 23 wells were listed as either not in use, backfilled, abandoned or dry.
 - 134 wells were listed as unknown or blank
 - 16 wells were listed as operational
- The purposes of the registered bores were:
 - 73 were identified as investigation bores
 - 11 were identified as observation bores
 - 10 were identified as irrigation bores
 - 9 were identified as managed aquifer recharge
 - 6 were identified as environmental bores
 - 5 were identified as irrigation/stock watering
 - 5 were identified as monitoring bores
 - 3 were identified as managed aquifer recharge/monitoring bores
 - 2 were identified as investigation/managed aquifer recharge
 - 2 were identified as drainage bores
 - 2 were identified as domestic bores
 - 2 were identified as domestic/irrigation/stock watering
 - 2 were identified as investigation/observation bores
 - 1 was identified for irrigation/observation
 - 1 was identified for domestic/irrigation
 - 1 was identified for exploration/investigation
 - 1 was identified for investigation/observation/managed aquifer recharge
 - 1 was identified for managed aquifer recharge/observation
 - 1 was identified for observation/stock watering
 - 1 was identified for stock watering
 - No purpose information was available for 34 registered bores.

A WaterConnect search summary and plan showing the registered bores within a 2 km radius is presented in Appendix C.

Total dissolved solids (TDS) recorded for 62 bores within 2 km radius indicated TDS values below 1,200 mg/L for 16 operational bores, however, these bores were either constructed before 1985, or drilled to >120 m depth to tertiary aquifer associated with the Managed Aquifer Recharge (MAR) scheme.

Information obtained from the EP Report (2018a) Desktop Review of Current Off-airport Groundwater Use, approximately 95 wells were located within a 1 km radius of the airport, but greater than 800 m of the airport. Review of the status and the locations of the bores indicated that the bores with potential domestic / irrigation uses recorded high salinity (>2,500 uS/cm EC, (human groundwater use unlikely) and were construction before 1985, i.e. unlikely to be functional.

Based on the WaterConnect data review, and assuming that older wells were no longer operational due to casing failure, no wells were considered to be present within 800 m of the Parafield airport and in a down hydraulic gradient direction, with potential to be impacted by airport activities and possibility of being in active use.

Information obtained from the EP Report (2018a) is summarised in Table 2-1 below.

Well status / purpose	Aquifer targeted	Approx. no. of wells	No. wells not considered	No. wells with potential for PFAS in groundwater	No. wells within 800m down hydraulic gradient of site	No. wells within 800m of site – with potential for PFAS in groundwater	Comment/reason for not considering further (change
NA	Q	16	16	NA	90	NA	Not included in review. One well not down hydraulic
BKF / INV or not indicated	Q	2	2	0		0	No longer in use.
ABD / INV		2	2	0		0	Review of historical aerial photographs suggest the lo
OPR, OPQ, NIU, unknown	Т	26	26	0		0	Tertiary aquifer is too deep to be at risk from shallow are expected to be cased through the Quaternary aqu
INV	Q	21	21	0		0	Coles Express Parafield Gardens, BP Investigation w population to groundwater unlikely.
ENG, UNK	Q	16	16	0		0	Purpose not stated but assumed in part for irrigation, unlikely, though players could be exposed to irrigation
INV	Q	3	3	0		0	Located along the wetland rail corridor of Mawson La assume for irrigation in part or monitoring of surface Exposure of general population to groundwater unlike
OPR, not indicated	Q	2	2	0		0	High salinity (>2,500uS/cm EC) – human groundwate Age of well construction (older than 1985) – unlikely t
UNK or not indicated INV, MON, TWS, not indicated	Q	4	4	0		0	 High salinity (>2,500uS/cm EC) – human groundwate Age of well construction (older than 1985) – unlikely to TDS, SWL and yield not recorded suggesting purpose are usually measured). Low yield (<0.2 L/s) bores in Hindmarsh Clay are unlikely
	Well status / purposeNANABKF / INV or not indicatedABD / INVOPR, OPQ, NIU, unknownINVENG, UNKINVOPR, not indicatedUNK or not indicatedUNK or not indicatedUNK or not indicated	Well status / purposeAquifer targetedNAQNAQBKF / INV or not indicatedQABD / INVQOPR, OPQ, NIU, unknownTINVQINVQINVQINVQOPR, ont unknownQINVQINVQStateQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINVQINV, MON, TVVS, not indicatedQINV, MON, TVNS, not indicatedS	Well status / purposeAquifer targetedApprox. no. of wellsNAQ16NAQ16BKF / INV or not indicatedQ2ABD / INVQ2OPR, OPQ, NIU, unknownT26INVQ21ENG, UNKQ16INVQ3OPR, not indicatedQ2INVQ3UNK or not indicatedQ4INV, MON, TWS, not indicatedQ4	Well status / purposeAquifer targetedApprox. no. of wellsNo. wells not consideredNAQ1616BKF / INV or not indicatedQ22ABD / INVQ22OPR, OPQ, NIU, unknownT2626INVQ2121ENG, UNKQ1616INVQ333OPR, not indicatedQ22UNK or not indicatedQ44	Well status / purposeAquifer targetedApprox. no. of wellsNo. wells not fot consideredNo. wells with potential for PFAS in groundwaterNAQ1616NABKF / INV or not indicatedQ220ABD / INVQ220OPR, OPQ, NIU, unknownT26260INVQ21210INVQ330INVQ220INVQ16160INVQ330INVQ330INVQ440	Well status / purposeAquifer targetedApprox. no. of wellsNo. wells not consideredNo. wells with potential for PFAS in groundwaterNo. wells within 800m down hydraulic gradient of siteNAQ1616NA90BKF / INV or not indicatedQ220BKF / INVQ220BKF / INVQ21210INVQ31330INVQ220INVQ220INVQ16160INVQ330INVQ220INVQ330INVQ220INVQ220INVQ220INVQ440IndicatedQ440INV, MON, TWS, notIndicatedIndicatedINV, MON, TWS, notIndicatedIndicated	Weil status / purposeAquifer targetedApprox. no. of weilsNo. weils not not consideredNo. weils with potential for PFAS in groundwaterNo. weils within hod moder hod moder groundwaterNo. weils within hod moder hod moder hydraulic groundwaterNo. weils within hod moder hod moder hydraulic groundwaterNo. weils within hod moder hod moder hydraulic groundwaterNo. weils within hod moder hod moder hod moder hydraulic groundwaterNo. weils within hod moder hod moder hod moder hydraulic groundwaterNo. weils within hod moder hod moder hydraulic groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils with potential for PFAS in groundwaterNo. weils within hod moder hydraulic groundwaterNo. weils with potential for PFAS in groundwaterNo. weils with potential for PFAS in groundwaterNo. weils with potential for PFAS in groundwaterNo. weils with potential for PFAS in grou

Table 2-1 Summary of Wells Reviewed – Off-site Parafield Airport (EP 2018a)

in status)

gradient, remainder are considered as on-site

ocation of wells has been built on.

aquifer contaminants (DNAPL excepted). Wells uifer(s).

vells on a service station site, exposure of general

exposure of general population to groundwater n water.

akes development and in areas of parkland, water influence on groundwater. ely.

er use unlikely.

to be functional.

er use unlikely.

to be functional.

e other than water supply (where TDS and yield

ikely to have been drilled for water supply.

2.2.4 Local hydrogeology

Using gauging data collected as part the groundwater investigations undertaken between November 2018 and May 2019, Table 2-2 provides a summary of the local hydrogeology. The results are relatively consistent between the sampling rounds.

Feature	Details
Groundwater Occurrence and Depth to Groundwater	The first regional aquifer is located at depths ranging between 2.56 mBGL (P9) and 6.046 mBGL (GWP1-PFC). Groundwater elevations across the site range between 2.622 mAHD (P40) and 8.718 mAHD (P44).
Groundwater Flow Direction	Groundwater flow direction was inferred to flow towards the south-west (Gulf St Vincent).
Groundwater Gradient	The groundwater gradient was calculated between P34 (4.457 mAHD) and P40 (2.768 mAHD) to be 0.003 m/m.
Effective Porosity	The effective porosity of the clay lithology was assumed to be 0.06.
Seepage Velocity	The seepage velocity of groundwater beneath the site was calculated to range between 1.7 X 10^{-5} m/year and 8.2 X 10^{-3} m/year, with a median / likely of 1.6 X 10^{-3} m/year.
Groundwater Salinity	Total dissolved solids (TDS) in groundwater within a 2 km radius of the Parafield airport site has been reported at concentrations below 1,200 mg/L for 16 operational bores, however, these bores were either constructed before 1985, or drilled to >120 m depth, i.e. to tertiary aquifer associated with the Managed Aquifer Recharge (MAR) scheme. Within the on-airport and off-airport investigation area TDS values (recorded between November 2018 and May 2019) ranged between 997 mg/L (in on-site well P33 located on southern boundary, Feb 2019) and 13,052 mg/L (in off-site well P39, located within Mawson Lakes survey area, Dec 2018).

Table 2-2 Summary of local hydrogeology

The groundwater occurrence levels and TDS values in March and May were generally lower than in December, January and February. It should be noted that different combinations of wells were sampled in each round, and a record of the sampling history can be seen in the Analytical Results Summary Tables at the end of this report.

3. Assessment criteria

PFAS was the key contaminant of enquiry as part of this environmental investigation. As such, the assessment criteria adopted for this investigation have been derived from the following guideline document:

• HEPA, 2018. PFAS National Environmental Management Plan, January 2018.

The values for the adopted screening/investigation levels from this contaminant of concern, which are considered to protect identified environmental values, are summarised in Table 3.1 (Groundwater) and Table 3.2 (Soil).

3.1 Groundwater

To assess the contamination status of groundwater at a site, the SA EPA provides a four step process to determine the environmental values of groundwater and to determine if actual or potential harm to groundwater that is not trivial has occurred. The four step process described in the Guideline on the assessment and remediation of site contamination (SA EPA, 2018) is described in Table 3-1.

Process	Assessment
Step 1: Apply Table 3 of Schedule 1 of the 2015 Water Quality Environment Protection Policy (WQEPP) based on total dissolved solids (TDS) ranges	TDS within the investigation area (recorded between November 2018 and May 2019) ranged between 997 mg/L (in on-site well P33 located on southern boundary, Feb 2019) and 13,052 mg/L (in off-site well P39, located within Mawson Lakes survey area, Dec 2018).
	(Step 3) indicated that lower pockets of salinity below 1,200 mg/L are present adjacent to the airport.
Step 2: Assess and identify surface water bodies within a 2 km buffer of the site	Dry Creek is located approximately 740 m to the south east of the airport, which drains into Greenfield Wetlands which are located approximately 1.6 km to the south west of the Site. Dry Creek is considered to represent a freshwater ecosystem and Greenfield Wetland is considered to represent a marine ecosystem.
Step 3: Review registered groundwater users in the WaterConnect database	The registered bore search identified 16 operational bores and 134 bores with unknown status. Registered bores had a variety of purposes and these are listed in Section 2.2.3 above. Remaining bores were either abandoned, not in use, backfilled or dry.
Step 4: Application of the EPA recognised criteria for the most sensitive environmental value	The most sensitive environmental value to be applied to the site is aquatic ecosystem (freshwater).

Table 2.1	Fourston	nrocoss	for	dotormining	harm	to	aroundwator
	TOUL SLEP	process	I UI	uetermining	панн	ιU	giounuwater

Based on the above assessment of environmental values for the site, the Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2 and Volume 3 (ANZECC, 2018) will be applied.

For the purpose of this assessment, criteria has been included to:

- Protect users of groundwater for human consumption (where salinity is sufficiently low)
- Protect users, should groundwater be extracted to irrigate vegetable gardens and / or fruit trees with which they grow produce for consumption.

- Protect recreational users, should groundwater be extracted to fill swimming pools within the residential area adjacent and west of the Airport and/or users of nearby surface water bodies.
- Protect freshwater and marine ecosystems.
 - The Dry Creek drainage on the plains from Mawson Lakes into Barker Inlet has been channelised throughout and receives various inputs from stormwater, therefore it is considered to be a moderately to highly modified environment for the purposes of this assessment. Similarly, the northern drainage into the Little Para catchment comprises channelized segments and receives numerous stormwater inflows, therefore it is also considered to be highly modified ecosystem.
 - The Dry Creek and Greenfield Wetland are considered to represent moderately to highly modified environment ecosystems, however, the ANZECC Guidelines (2000) recommend applying for the highly modified environment ecosystems the same guideline as for slightly-moderately disturbed system, therefore, the 95% Species Protection value has been selected to assess the effects of PFAS chemicals on aquatic organisms.

Table 3-2 Adopted PFAS interim screening criteria (Groundwater)

Exposure Scenario	PFOS/PFHxS	PFOA	Source
PFAS NEMP 2018	0.13 μg/L (PFOS)	220 µg/L	HEPA, 2018
Freshwater and interim Marine			
95% Species Protection – Slightly to			
Moderately modified ecosystems			
PFAS NEMP 2018	0.07 μg/L	0.56 µg/L	HEPA, 2018
Drinking Water			
PFAS NEMP 2018	0.7 µg/L	5.6 µg/L	HEPA, 2018
Health Recreational Water			

3.2 Soil

Limited soil samples collected on the airport have been compared to the following assessment criteria based on land use. Soil leachate results have been compared to drinking water criteria as this is the most sensitive use of groundwater adjacent to where the soil samples were collected. The soil criteria are summarised in Table 3-3.

Table 3-3 Adopted PFAS screening criteria (Soil)

Exposure Scenario	PFOS / PFHxS	PFOA	Source
PFAS NEMP 2018	20 mg/kg	50 mg/kg	HEPA, 2018
Human Health Screening Values Industrial / Commercial			
PFAS NEMP 2018	0.7 µg/L	0.56 µg/L	HEPA, 2018
Drinking Water			

4. **Methodology**

4.1 Groundwater well installation methodology

Eleven (11) groundwater monitoring wells were installed as part of this environmental investigation. Well installation details are provided in Table 4-1.

Table 4-1	Groundwater	well in:	stallation	methodology
-----------	-------------	----------	------------	-------------

Activity	Details
Underground services locating	Pipeline Technology Services cleared underground services using radio-detection and ground penetrating radar with reference to utility plans provided by Dial Before You Dig (DBYD) prior to any sub- surface works being undertaken.
Well construction	Groundwater Well Permits were obtained from the Department of Environment, Water and Natural Resources (DEWNR). These are contained in Appendix D. The monitoring wells were installed in accordance with the Minimum Construction Requirements for Water Bores in Australia, Edition 3 (2012) and were constructed using 50 mm ID uPVC, Class 18, acid washed threaded standpipe with machine slotted (0.4 mm) screened section. Groundwater monitoring wells, P34 and P36 to P44, were drilled to a depth of 6.0 metres below ground level (mBGL) in order to target the first quaternary aquifer (Q1). Groundwater monitoring well, P35, was drilled to a depth of 7.0 mBGL to ensure sufficient penetration into the Q1 aquifer. The wells were drilled using solid augers. Clean augers were used to drill each well. Wells P34 and P36 to P44 were installed with a 4 m screen from 2.0 to 6.0 mBGL, while P35 was installed with a 4 m screen from 3.0 to 7.0 mBGL. Graded and washed filter sand was installed around and slightly above (0.3 m) the screened interval. Monitoring wells were completed to surface with bentonite and grout. Wells were completed at the surface with either flush mounted gatic covers or standpipes (P34). Details of the monitoring wells construction are provided in the borehole logs in Appendix E.
Well survey	The top of each well casing was surveyed to Australian Height Datum (AHD) Map Grid Australia (MGA) zone 54 in Geocentric Datum of Australia (GDA 94). In the instance where the top of casing was not evenly cut, the highest point of the top of casing was surveyed. The survey data (with reference level at top of casing) is presented in Appendix A.
Well development	The wells were developed following construction by disposable bailer method using a dedicated bailer for each well. GHD considers the development procedure undertaken adequate to prepare the wells for collection of representative groundwater samples.
Purge water disposal	Purged water from the well development was disposed of in a sealed Cleanaway drum and placed in a secure area for disposal off site to a licensed facility.
Soil cuttings	NDD waste and soil cuttings from drilling activities were disposed of in a sealed drum and placed at the Parafield Airport for disposal off site to a licensed facility by Cleanaway.

4.2 Groundwater monitoring and sampling methodology

Details of groundwater monitoring and sampling methodologies are summarised in Table 4-2.

Activity	Details
Well gauging	The standing water level (SWL) and bore depth were gauged and recorded using an Oil / Water Interface Probe. The measurement was taken from the top of the bore casing (TOC). Groundwater parameters (pH, temperature, dissolved oxygen (DO), oxidation-reduction potential (ORP) and electrical conductivity (EC)) were monitored and recorded using a Multi Parameter Water Meter. Well gauging data, as well as, groundwater parameters were recorded on a Groundwater Gauging Sheet and Purging and Sampling Records. The Groundwater Gauging Sheet and Purging and Sampling Records are presented in Appendix B. Equipment Calibration Certificates are contained in Appendix F.
Groundwater sampling	All monitoring wells were sampled using high density Hydrasleeves [™] (suitable for PFAS sampling). Groundwater samples were collected directly from the Hydrasleeve [™] in laboratory supplied containers (pre-preserved where appropriate) and filled up to minimise headspace.
Sample preservation and transport	Post collection, samples were immediately stored on ice in an insulated cooler. Samples were delivered to the laboratory by GHD Field Staff under Chain of Custody (COC) documentation. COC documentation is presented in Appendix G.
Decontamination	Decontamination of the Oil / Water Interface Meter and sampling equipment was undertaken through a three stage approach. The first stage involved cleaning the equipment using a mixture of pH neutral phosphate free detergent (Decon® Neutracon) in water, followed by a deionised water wash and a final rinse stage. Hydrasleeves [™] were disposed of after each use.
QA/QC	Quality control samples were collected at a minimum rate of one replicate pair per 20 primary samples. The replicate pair included one intra-laboratory sample and one inter-laboratory sample. Rinsate samples were collected once per sampling day to assess the potential for cross contamination on reusable sampling equipment.
Purge water disposal	Excess water was disposed of in a sealed drum and placed in a secure area for disposal off site to a licensed facility by Cleanaway.

Table 4-2 Groundwater monitoring and sampling methodology

4.1 Soil sampling methodology

The soil sampling methodology is summarised in Table 4-3.

Table 4-3 Soil sampling methodology

Activity	Details	
Sampling	The soil bore was drilled using a hand auger to a maximum depth of 0.2 mBGL. Soil samples were collected directly into a laboratory supplied jars using jar to grab the sample directly from the soil bore and / or hand auger. Soil samples were collected at depths of 0 mBGL to 0.1 mBGL and 0.1 mBGL to 0.2 mBGL. Sampling depths and collection were adjusted for changes in lithology,	
	and visual and olfactory evidence of contamination (where present).	
Soil logging	Soils encountered at each sample location were described and recorded on Borehole Logs. Borehole Logs are presented in Appendix E.	

Activity	Details
Sample preservation and transport	Post collection, samples were immediately stored on ice in an insulated cooler. Samples were delivered to the laboratory (MGT Eurofins) by GHD Field Staff under Chain of Custody (COC) documentation. COC documentation is presented in Appendix G.
Decontamination	Decontamination of the hand auger used to collect samples was undertaken through a three stage approach. The first stage involved cleaning the equipment using a mixture of pH neutral phosphate free detergent (Decon® Neutracon) in water, followed by a deionised water wash and a final rinse stage.

4.2 Departures from the SAQP

There were no departures from the SAQP (Sampling and Analysis Quality Plan).

4.3 Work health and safety

GHD prepared a project-specific Job Safety and Environmental Analysis (JSEA) for the site works in accordance with Work Health and Safety (WHS) legislation and associated Codes of Practice. The JSEA consisted of a summary of relevant site activities and specific job-related tasks; a hazard register that identifies all foreseeable hazards; risk ranking and risk management measures for each identified hazard; and procedures for monitoring and/or implementing remedial actions to manage all project-based risks. Prior to undertaking the fieldworks, the GHD field representatives and all subcontractors held a pre-start meeting on site. Daily GHD forms were completed before commencement of work each day.

4.4 Laboratory analysis program

4.4.1 Analytical laboratories

GHD consigned all primary groundwater, soil, rinsate and associated intra-laboratory field duplicate (blind) and inter-laboratory duplicate (split) samples to National Measurement Institute (NMI) and ALS Group for analysis.

Certified laboratory documentation including chain of custody records, sample receipt notifications, certificates of analysis and laboratory QA / QC reports are provided in Appendix G.

4.4.2 Sample analysis

Groundwater samples were analysed for PFAS (Full Suite), whereas soil samples were analysed for PFAS (Dry Weight and Leachate).

Table 4.4 summarises the sampling and analysis undertaken for groundwater and soil.

Sample type	No. primary samples		No. QA samples		Analytical suite		
	Collected	Analysed	Collected	Analysed			
Water							
Groundwater	24	24	7	7	PFAS (Full Suite)		
Groundwater	12	12	3	3	PFAS (Short Suite)		
Soil							

Table 4-4 Laboratory analytical schedule

Sample type	No. primary samples		No. QA samples		Analytical suite	
	Collected	Analysed	Collected	Analysed		
Soil	2	2	0	0	PFAS (Dry Weight and Leachate)	

4.5 Water use survey

The investigation area for the water use survey covers segments of Parafield Gardens and Mawson Lakes in the City of Salisbury that adjoin the airport. Key profile characteristics of these suburbs are presented in Table 4-5.

Table 4-5 Profile of key characteristics of Mawson Lakes and Parafield Gardens

Characteristic	Mawson Lakes		Parafield Gardens			
Population	13,297		16,945			
Median weekly household income	\$1,666		\$1,140			
Dwelling type						
-separate house	2,771	(59.0%)	5,128	(89.1%)		
Semi-detached, row or terrace house, townhouse etc	1,212	(25.8%)	481	(8.4%)		
Flat or apartment	703	(15.0%)	141	(2.4%)		
Other dwelling	3	(0.1%)	-	-		
Rented dwelling	1,922	(41.0%)	1,584	(27.5%)		
Internet connection from dwelling	4,351	(92.7%)	4,625	(80.4%)		

Source: Australian Bureau of Statistics 2016, Census of Population and Housing

While no registered groundwater bores were located within the investigation area, through an abundance of caution and due to the characteristics of the investigation area, a groundwater use survey was undertaken to determine if there were any users of groundwater from unregistered wells. The survey was designed to capture off-site water use (groundwater, rainwater and mains) of occupants of residential, commercial and recreational properties. Information collected from the survey was used to determine the extent of bore use in the area, how bores are being used and whether additional sampling needs to be conducted to better understand the hydrogeological characteristics of the investigation area adjacent to the southwestern boundary of Parafield Airport.

The survey was structured in 3 sections:

- 1. Demographic- collection of property type and respondent details with the option to provide email or phone details
- 2. Property water supply source- data on the source of water to the main dwelling/ building and source of water for outdoor/ non-household use
- 3. Bore water use- data on any groundwater bore, its condition, storage, distribution and use.

A copy of the water use survey is attached in Appendix I.

A survey team door knocked properties in the investigation area to inform occupants of the groundwater investigations and provide the opportunity to participate in the water use survey. Participation in the survey was voluntary. People were also informed that their responses would be private and that information may be shared with Parafield Airport Limited's technical advisors, the Commonwealth Government, and relevant SA government agencies, organisations, and entities responsible for groundwater regulation.

For people who were present at the time of the doorknock, and willing to participate, survey responses were recorded by the survey team using mobile phones or tablets. In cases where occupants chose not to participate in the survey at the time of the doorknock, a letter and frequently asked questions (FAQ) sheet were provided. Similarly, the letter to residents and FAQ sheet were dropped in letterboxes at properties where no one was home. The letter to residents provided details of the survey providing the opportunity for people to complete it online. The first phase of the online survey was open from 16 November to 21 December 2018 and the second phase from 29 January- 28 February 2019. Residents were also provided the option to call the 1800 hotline for help with the online survey or to ask questions.

The following sections summarise the field observations and analytical results of the Preliminary Sampling. Sample locations are shown in Figure 2 at the end of this report. Interpretation and discussion of the results is provided in Section 7.

5.1 Groundwater

5.1.1 Field observations and parameters

Groundwater field physicochemical parameters (pH, electrical conductivity (EC), dissolved oxygen (DO), Redox and temperature) were recorded during the gauging and sampling process. The results were recorded on Purging and Sampling Records, which are presented in Appendix B. The groundwater field physicochemical results recorded at each groundwater monitoring event were relatively consistent, but ranges did vary slightly between events. Results from the March 2019 groundwater monitoring event are summarised as follows:

- The groundwater pH results ranged between pH 7.32 (P44) to pH 8.12 (P42) indicating slightly alkaline groundwater conditions.
- Field EC (recorded between November 2018 and May 2019) ranged from 1,534 µS/cm (P33, Feb 2019) to 20,081 µS/cm (P39, Dec 2018). The calculated TDS values indicated a minimum salinity of 997 mg/L (in on-site well P33 located on southern boundary, Feb 2019) and 13,052 mg/L (in off-site well P39, located within Mawson Lakes survey area, Dec 2018).
- Dissolved oxygen ranged between 1.06 mg/L (P9) and 10.02 mg/L (P44).
- Standard hydrogen electrode (SHE) redox ranged between -107.1 mV (P44) and 174.4 mV (P35).
- Temperature ranged between 20.7 °C (P40) and 22.6 °C (P34) which are considered within normal ranges for autumn.

5.1.2 Analytical results

The tabulated analytical groundwater results are presented at the end of this report and laboratory reports are provided in Appendix G. Thirty six (36) primary groundwater samples were submitted for laboratory analysis with the results presented below in Table 5-1.

A figure showing groundwater and surface water PFOS concentrations is included as Figure 4 at the end of this report.
Table 5-1 Summary of groundwater analytical results

No.	Analyte	Min Conc.	Max Conc.	Samples exceeding criteria
Primary		(µg/L)	(µg/L)	
Samples				
Phase 1 – De		no oti o no l 104/s (
PFAS NEMP	2018 Health Rec		0.45	
1	PFUS/PFHXS	0.04	0.15	
	PFUS	0.0035	0.055	NII
	PFUA	<0.001	0.024	NII Drotostion Olivitati t
Moderately D	Disturbed Ecosyste	ems	e 95% Species I	Protection – Slightly to
7	PFOS/PFHxS	0.04	0.15	No applicable criteria
	PFOS	0.0035	0.055	Nil
	PFOA	<0.001	0.024	Nil
PFAS NEMP	2018 Drinking Wa	ater		
7	PFOS/PFHxS	0.04	0.15	P34, P36, P37
	PFOS	0.0035	0.055	Nil
	PFOA	<0.001	0.024	Nil
Phase 2 – Fe	ebruary 2019			
PFAS NEMP	2018 Health Rec	reational Wate	r	
5	PFOS/PFHxS	0.057	1.372	P44
	PFOS	0.020	0.24	Nil
	PFOA	0.0031	0.051	Nil
PFAS NEMP Moderately D	2018 Freshwater	/Interim Marine ems	e 95% Species I	Protection – Slightly to
5	PFOS/PFHxS	0.057	1.372	No applicable criteria
	PFOS	0.020	0.24	P43
	PFOA	0.0031	0.051	Nil
PFAS NEMP	2018 Drinking Wa	ater		
5	PFOS/PFHxS	0.057	1.372	P41, P42, P43, P44
	PFOS	0.020	0.24	P43, P44
	PFOA	0.0031	0.051	Nil
Phase 2 – Ma	arch 201 <u>9 Resam</u>	pling		
PFAS NEMP	2018 Health Rec	reational Wate	r	
12	PFOS/PFHxS	0.0245	1.658	P44
	PFOS	0.0057	0.058	Nil
	PFOA	<0.001	0.05	Nil
PFAS NEMP	2018 Freshwater	/Interim Marine	e 95% Species I	Protection – Slightly to
Moderately D	isturbed Ecosyste	ems		5 7
12	PFOS/PFHxS	0.0245	1.658	No applicable criteria
	PFOS	0.0057	0.058	Nil
	PFOA	< 0.001	0.05	Nil
PFAS NEMP	2018 Drinking W	ater		
12	PFOS/PFHxS	0.0245	1.658	GWP2-PFC, P34, P36, P40, P41, P42, P44
	PFOS	0.0057	0.058	Nil
	PFOA	<0.001	0.05	Nil
Phase 2 – Ma	ay 2019 Re <mark>sampli</mark>	ng		
PFAS NEMP	2018 Health Rec	reational Wate	r	
12	PFOS/PFHxS	0.03	1.87	P44
	PFOS	0.02	0.13	Nil

No. Primary Samples	Analyte	Min Conc. (µg/L)	Max Conc. (µg/L)	Samples exceeding criteria
	PFOA	<0.01	0.08	Nil
PFAS NEMP Moderately D	2018 Freshwater Disturbed Ecosyste	/Interim Marine ems	95% Species I	Protection – Slightly to
12	PFOS/PFHxS	0.03	1.87	No applicable criteria
	PFOS	0.02	0.13	Nil
	PFOA	<0.01	0.08	Nil
PFAS NEMP	2018 Drinking W	ater		
12	PFOS/PFHxS	0.03	1.87	GWP3-PFC, P34, P36, P37, P41, P42, P44
	PFOS	0.02	0.13	P44
	PFOA	<0.01	0.08	Nil

5.1.1 Limited Resampling by Environmental Projects

Environmental Projects was engaged to resample three (3) groundwater wells: GWP2-PFC, GWP3-PFC and P44. The full report is provided in Appendix J. A summary of the results is presented below in Table 5-2.

Table 5.2	Environmental	Projects	Resampling	Results
1 4016 3-2	LIVII UIIIII EIItai	FIUJECIS	Resampling	Results

No. Primary Samples	Analyte	Min Conc. (µg/L)	Max Conc. (µg/L)	Samples exceeding criteria								
PFAS NEMP 2018 Health Recreational Water												
3	PFOS/PFHxS	0.0361	0.121	Nil								
	PFOS	0.0162	0.0514	Nil								
	PFOA	0.0033	0.004	Nil								
PFAS NEMP Moderately D	PFAS NEMP 2018 Freshwater/Interim Marine 95% Species Protection – Slightly to Moderately Disturbed Ecosystems											
3	PFOS/PFHxS	0.0361	0.121	No applicable criteria								
	PFOS	0.0162	0.0514	Nil								
	PFOA	0.0033	0.004	Nil								
PSAF NEMP	2018 Drinking W	ater										
3	PFOS/PFHxS	0.0361	0.121	GWP3-PFC								
	PFOS	0.0162	0.0514	Nil								
	PFOA	0.0033	0.004	Nil								

5.2 Soil

5.2.1 Field observations

Based on observations made through this investigation, the site geology was found to contain varying combinations of clayey sand and fine - grain silt, often containing trace gravel and organic materials, from the surface to a depth of approximately 0.2 - 0.5 m. This was generally underlain with pale brown to red brown clay of medium to high plasticity.

The soil field observations are presented in the borehole logs contained in Appendix E.

5.2.2 Analytical results

The tabulated analytical soil results are presented at the end of this report and laboratory reports are provided in Appendix G. Two (2) primary soil samples collected HA01 were submitted for laboratory analysis with the results presented below in Table 5-3.

No. Primary Samples	Sample Type	Analyte	Min Conc.	Max Con.	Samples exceeding criteria
2	Leachate	PFOS / PFHxS	<0.02 µg/L	0.024 µg/L	nil
		PFOA	<0.01 µg/L	<0.01 µg/L	nil
	Dry - Weight	PFOS / PFHxS	<0.002 mg/kg	<0.002 mg/kg	nil
		PFOA	<0.001 mg/kg	<0.001 mg/kg	nil

5.3 Water use

5.3.1 Participation in the survey

The water use survey was conducted in two phases. The initial phase was conducted over 16 to 21 November 2018 in Areas 1 and 2 to the southern-western boundary of the airport where 78 occupants participated in the survey from a total 374 households that were door-knocked. A further 2 surveys were completed by residents online.

The second phase of properties door-knocked extended beyond the Area 2 going further west away from the Airport boundary. The second phase of the survey doorknocked an additional 263 properties and was conducted over 29 to 30 January 2019. The second phase of the survey had 11 respondents participated in the survey. Another 7 surveys were completed by residents online following the door knock and letter drop.

The survey results presented in this report are the aggregated results of the 122 online and face-to-face responses from the doorknock of a total of 637 properties in the investigation area.

5.3.2 Property type

The vast majority of respondents were private residential property owners a single response from a recreational property occupants, the Parafield Gardens Soccer and Sports Club which uses the Bradman Oval.

5.3.3 Water supply to dwellings or buildings

All survey respondents indicated they had mains water connected to their dwelling or building in the case of the Sports Club. A small number of respondents (n=22) also have tank/ rainwater connected to their house. These results are illustrated in Figure 5-1.

Figure 5-1 Source of water supply to dwelling/ building(s)

5.3.4 Water supply for non-household/ outdoor use

The vast majority of respondents indicated that water supplied for outdoor / non-household use is either recycled (Mawson Lakes) or mains water (Parafield Gardens) with 22 respondents indicating that they also use tank/ rainwater. One respondent indicated they use bore water as illustrated in Figure 5-2.

Figure 5-2 Source of water supply for non-household/ outdoor use

5.3.5 Respondents with groundwater extraction bores

Of the 122 survey participants, 1 respondent indicated they have a groundwater bore on their residential property. In addition, Parafield Gardens Soccer and Sports Club indicated that 2 bores are operated by Council to irrigate the sports grounds. Council have confirmed that these bores extract water from the tertiary aquifer associated with the Managed Aquifer Recharge (MAR) scheme and not associated with shallow groundwater, which is the subject of this investigation.

The participation in the survey is representative of registered bore users in the investigation area with one (1) registered residential bore user, and 10 recreational / community bores.

5.3.6 Bore water use

Both the residential and recreational water bores were reported to be registered, in working condition and used for irrigating the lawn. Survey respondents confirmed that groundwater was not plumbed into buildings. Neither of the respondents indicated that they have rainwater tanks that could have been used to store groundwater.

6. **Quality Assurance and Quality Control**

Data Quality Indicators (DQIs), Field QA/QC, Laboratory QA/QC and Field QC Results are presented in Appendix H.

GHD considers the data to be valid and of sufficient quality for the purposes of this Environmental Investigation.

7. **Discussion**

7.1 Variability between Sampling Rounds

Exceedances for Phase 1 and 2 sampling, thus far, have been detected for PFHxS and PFOS/PFHxS whilst no exceedances have been detected for PFOA.

Phase 1 November 2018 Sampling Round

The results for Phase 1 GME in November 2018 showed the following:

- Exceedances of the NEMP Drinking Water Guidelines in on-site well P34 and wells P36 and P37 located off-site to the west of the site.
- There were no exceedances of the Freshwater/Interim Marine Guidelines (95% Species Protection – Slightly to Moderately Disturbed Ecosystems) or NEMP Recreational Water Guidelines in any of the groundwater wells.

Phase 2 February 2019 Sampling Round

The results for Phase 2 sampling in February 2019 showed the following:

- Exceedances of the NEMP Drinking Water Guidelines for P41, P42, P43 and P44 located off-site down hydraulic gradient of P34, P36 and P37 sampled in Phase 1.
- An exceedance of the Freshwater/Interim Marine Guidelines (95% Species Protection Slightly to Moderately Disturbed Ecosystems) for P43 located off-site, to the west of the site.
- Well P44 located on the north western boundary of the site showed a notably high impact (PFOS/PFHxS of 1.372 ug/L) exceeding the NEMP Recreational Guideline (0.7 ug/L).

Phase 2 March 2019 Sampling Round

Resampling of selected wells undertaken in March 2019 to confirm the results of the Phase 2 sampling round indicated the following:

- Results for P34, P36, P40, P41, P42 and P44 showed exceedances consistent with previous results of the NEMP Drinking Water Guidelines.
- Results for newly sampled well GWP2-PFC located on the north western boundary of the site also exceeded the NEMP Drinking Water Guidelines, however this is not consistent with previous sampling round results. GWP3-PFC was below the NEMP Drinking Water Guidelines which was also not consistent with previous historical results. This is likely due to an administrative error on the part of the consultant, and the concentrations in GWP2-PFC may apply to GWP3-PFC and vice versa. Future sampling rounds may give an indication if this is likely to have occurred.
- The results at GWP1-PFC were below the NEMP drinking water guideline which was consistent with previous rounds.
- Well P44 showed a high impact (PFOS/PFHxS of 1.658 ug/L) exceeding the NEMP Recreational Guideline, consistent with the previous February 2019 sampling round.
- The results at locations GWP2-PFC, GWP3-PFC and P44 were perceived as anomalous based on a comparison with historical results or based on the known spatial distribution of PFAS on the western boundary of the airport (P44).
- No exceedances were observed for the Freshwater/Interim Marine Guidelines (95% Species Protection – Slightly to Moderately Disturbed Ecosystems) for any of the wells.

April 2019 Sampling Round (EP)

In April 2019, Environmental Projects conducted a GME which showed the following:

- Detectable PFAS concentrations were below the Drinking Water guidelines at adjacent wells P44 and GWP2-PFC, which was not consistent with the GHD (March 2019) results.
- GWP3-PFC exceeded Drinking Water guidelines which was consistent with historical results (LBW/EP 2016, Golder (2017 and 2018) and GHD 2016), but not consistent with GHD (March 2019) which was below Drinking Water guidelines.

Phase 2 May 2019 Sampling Round

Due to the anomalous nature of the April 2019 results at P44, an additional sampling round was conducted in May 2019 to eliminate any possibility of error. Additional measures were undertaken during this round to ensure sample label error and laboratory error could not be contributing factors in the results.

This sampling round indicated the following:

- Elevated PFAS concentrations at P44 above the recreational criteria were consistent with previous GHD (2019) results.
- Well GWP1-PFC results were below the guidelines, consistent with previous results.
- Well GWP2-PFC results were consistent with EP (April 2019) results and Golder (2018) results, but not with the GHD (March 2019) anomalous results which exceeded the Drinking Water Guidelines

Overall, a review of the broader temporal groundwater data set does indicate some variability between sampling rounds, environmental consultants and analytical laboratories by up to an order of magnitude, suggesting there may be short term influencing factors affecting PFAS concentrations in groundwater at some locations on the airport. This being said locations such as GWP1-PFC, GWP2-PFC (with the exception of the anomalous March sampling result) GWP3-PFC (with the exception of the anomalous March sampling result), P34 and P36 are reporting consistent results between sampling rounds.

7.2 PFAS in soil adjacent monitoring well P44

The dry weight and leachable PFAS concentrations detected in shallow soil adjacent to P44 did not indicate a gross localised residual source in shallow soil to be present at this location. A detectable leachable PFOS concentrations was detected at a depth range of 0.1 to 0.2 m bgl suggesting that a weathered localised source may be present at this location or PFAS has been transported to this area via surface water transport. It is considered unlikely that soil in this portion of the Airport is contributing significant PFAS contaminant mass to the surface drain located adjacent the Airport boundary, which provides stormwater to the MAR. The source of PFAS at P44 has not yet been confirmed and is likely be a localised source present adjacent to or up hydraulic gradient of this location and within the Airport boundary.

7.3 Distribution of PFAS impacted Groundwater

The current and historical groundwater data indicates there are potentially two on airport areas contributing to PFAS in groundwater:

- Former firefighting training ground and
- Unidentified localised source in the northern portion of the airport.

Temporal groundwater sampling has indicated elevated PFAS concentrations on the boundary of the airport at GWP3_PFC which are similar to offsite PFAS concentrations to the west of the

airport, however the distribution of PFAS down the hydraulic gradient does not show decreasing concentrations along the gradient. The current investigation has confirmed elevated PFAS concentrations at newly installed well P44.

PFOS and PFHxS did not extend to the south of the Airport beneath Mawson Lakes, so it has been delineated in this direction by wells P38 and P39 to the adopted criteria.

PFOS and PFHxS concentrations, to the drinking water criterion, were delineated to the south west of the airport by off-site well P40.

PFOS and PFHxS was identified to extend to the west of GWP3_PFC at concentrations exceeding the drinking water criterion up to 440 m from the Airport's boundary and has not been delineated in this direction. No significant decrease in PFAS concentrations have been observed down the hydraulic gradient to the west.

No wells have been installed to the west of P44 at this stage and the extent of PFAS chemicals in groundwater migrating off airport has not been determined.

7.4 Off-airport water use on other properties

All property owners surveyed use mains water for consumption inside their dwelling or building. Recycled water is commonly used outdoors in Mawson Lakes which is a newer development. Some respondents (18%) supplement reticulated water with tank/ rain water for outdoor use in Parafield Gardens. A small proportion (2 from 122 respondents) indicated that they have a groundwater bore which is only used for irrigation of lawns. These results suggest there is no pathway for residents to be exposed to PFAS within the assessment area.

The Parafield Gardens Soccer and Sport Club which uses Bradman Oval uses groundwater for irrigating the turf. The Council is the registered owner of the bores. It has been confirmed that the bore sources water from the Managed Aquifer Recharge (MAR) which is independent from the Quaternary Aquifer (Q1) that is the subject of PFAS investigations.

The single residential respondent who has a bore and the Parafield Gardens soccer club, as a recreational groundwater user provides a reliable representation of groundwater use in the investigation area.

7.5 Conceptual Site Model (CSM)

Table 7-1 Conceptual Site Model (CSM)

Potential source	Receptor	Pathway	Pathway present?
PFAS migrating in groundwater from	Agriculture: crops	Crops irrigated with contaminated groundwater	No cropping is located adjacent to the site.
on airport residual sources to off-site extraction points	Down gradient off-site maintenance workers that contact PFAS contaminated soil, sediment, surface water and / or groundwater	Direct dermal contact or incidental ingestion of contaminated soil, sediment, surface water and / or groundwater.	Unlikely Whilst it's possible that off-site maintenance workers could incidentally ingest contaminated soil, sediment, surface and / or groundwater, it's unlikely that they'll ingest quantities detrimental to their health.
	People using groundwater for: domestic and drinking purposes	Consumption of contaminated groundwater.	Unlikely Although some pockets of lower salinity groundwater was identified in the registered bore survey, the salinity did exceed the NHMRC 2011 (updated 2018) aesthetic criterion for TDS. As such it is considered unlikely consumption of poor quality groundwater would constitute a primary drinking water source, especially considering the presence of a reticulated water supply.
	People using groundwater for: irrigation of vegetable gardens and / or fruit trees with which they grow produce for consumption.	Consumption of fruit and vegetables irrigated by contaminated groundwater.	Possible The average calculated TDS value (2,921.49 mg/L) indicates brackish groundwater beneath the area of investigation which is considered suitable for domestic and primary irrigation purposes (SA EPA, 2015). However, the water use survey completed as part of the current investigations confirmed that no residents were using water for vegetable gardens or fruit trees irrigation. Therefore there is not considered to be a pathway for residents to be exposed to PFAS within the water use survey area.
	People using groundwater for recreational purposes such as filling of swimming pools	Incidental ingestion of contaminated groundwater.	No Groundwater used for recreational purposes such as filling of swimming pools is considered unlikely (SA EPA, 2015). Whilst it's possible people could use groundwater for recreational purposes such as filling a swimming pool, the off – site groundwater monitoring well results do not exceed the adopted criteria PFAS NEMP 2018 Health Recreational Water.

Potential source	Receptor	Pathway	Pathway present?
PFAS migrating in groundwater from on airport residual sources offsite and interacting with root zones of fruiting plants	People consuming fruiting plants	Consumption of fruit, nuts and other plant matter which has taken up PFAS from the groundwater.	Possible The depth to groundwater may be in range of some larger fruit and/or nut trees root systems, it is unlikely that groundwater is within the root zone of annual vegetable crops. It is not known if the concentrations detected in groundwater, if taken up by edible plants is sufficient to result in accumulation of PFAS in edible plant material.
PFAS migrating in groundwater from on airport residual sources offsite to fresh and marine water bodies	Freshwater and marine water bodies	Migration through porous media and discharge to water bodies	No PFAS exceedance of the Freshwater/Interim Marine Guidelines (95% Species Protection – Slightly to Moderately Disturbed Ecosystems) was reported in one off-site well P43 located to the west of the site (February 2019 Sampling Round), however, there were no exceedance in the subsequent rounds. Therefore, based on the latest groundwater results there is no risk to nearby waterbodies.

7.6 Data Gaps

Based on the review of the results of current and previous investigations as outlined in Section 1.2 and the CSM, the following data gaps remain:

- A localised PFAS contamination source in the northern portion of the airport (near well P44) is not identified.
- Delineation of the PFAS impacts (above the drinking water criterion) in the groundwater migrating down hydraulic gradient off the north-western part of the airport (well P44) has not been achieved.
- The extent of PFAS has not been delineated to the drinking water criterion to the southwest of off-site wells P41 and P42 located in residential areas.

Based on the identified data gaps, it is considered that additional groundwater data is required to delineate the off-site extent of PFAS contamination in groundwater north-west and south-west of the airport and further assess the potential risk to offsite sensitive receptors.

7.7 Uncertainty assessment

While the investigations have been completed in accordance with the current industry guidance on PFAS and prevailing EPA and HEPA guidelines, however, there are inherent limitations associated with environmental investigations which are invariably based on intrusive investigation and sampling data from a number of discrete locations. There is always an element of uncertainty associated with interpolating conditions between the data points, due to the natural seasonal variation and the micro and macro variation in the distribution of chemical substances that might have been introduced to a site. This is also complicated by the potential for the nature and extent of impacts to change over time.

While the CSM identified that potentially complete exposure pathways may exist via irrigation of vegetable gardens with shallow groundwater, there are some uncertainties over the potential risk to sensitive receptors via uptake of shallow groundwater by fruiting trees. There is an uncertainty over what amount of PFAS would accumulate in edible plant material, if they are irrigated with contaminated groundwater.

There was also inconsistency of the off-airport results down hydraulic gradient of GWP3-PFC, as no significant decrease in PFAS concentrations have been observed down the hydraulic gradient to the west.

Overall, variability between the sampling rounds, environmental consultants and analytical laboratories by up to an order of magnitude at some locations indicates some uncertainty of some short term influencing factors affecting PFAS concentrations in groundwater at some locations on the airport. This being said locations such as GWP1-PFC, GWP2-PFC (with the exception of the anomalous March sampling result), GWP3-PFC (with the exception of the anomalous March sampling result), P34 and P36 are reporting consistent results between sampling rounds.

8. Conclusions

Based on the findings of this investigation, the following conclusions have been made:

- The first regional aquifer is located at depths ranging between 2.567 mBGL (P9) and 6.046 mBGL (GWP1-PFC), and groundwater elevations across the site range between 2.622 mAHD (P40) and 8.718 mAHD (P44), as of March 2019.
- Groundwater flow direction was inferred to flow towards the south west towards the Gulf of St. Vincent.
- Review of the WaterConnect bore records indicated that for 62 bores within 2 km radius with available TDS records, TDS values were below 1,200 mg/L for 16 operational bores; however, these bores were either constructed before 1985 and unlikely to be functional, or were drilled to >120 m depth to tertiary aquifer associated with the Managed Aquifer Recharge (MAR) scheme.
- Within the on-airport and off-airport investigation area TDS values (recorded between November 2018 and May 2019) ranged between 997 mg/L (P33) and 13,052 mg/L (P39). An assessment of groundwater salinity indicated that saline groundwater in the vicinity of the site is of poor quality and is unlikely to be suitable for potable use and/or for irrigation of vegetable gardens, recreational use and maintenance of aquatic ecosystems (both fresh and marine).
- The dry weight and leachable PFAS concentrations detected in shallow soil adjacent to P44 did not indicate a significant localised residual source in shallow soil to be present at this location, however detectable leachable PFAS concentrations were detected in shallow soils at this location. PFAS concentrations in soil at this location are not considered to represent a contamination risk to the adjacent stormwater harvesting infrastructure associated with the MAR scheme. This was also confirmed by the results of sampling undertaken by Salisbury Water (provided by AAL) which indicated that stormwater PFAS concentrations were below the drinking water guideline values.
- The current and historical groundwater investigation results indicated presence of potentially two on airport sources contributing to PFAS in groundwater: former firefighting training ground and an unidentified localised source in the northern portion of the airport.
- The extent of PFAS was delineated to the drinking water criterion to the south and to the south-west of the Airport.
- The extent of PFAS has not been delineated to the drinking water criterion to west of on Airport monitoring well GWP3_PFC. Investigations have not yet been undertaken to the west of P44 and the extent of PFAS to the west of this well location has not been determined. There was some inconsistency of the off-airport results down hydraulic gradient of GWP3-PFC, as no significant decrease in PFAS concentrations have been observed down the hydraulic gradient to the west.
- Off-airport water use survey undertaken for the 122 properties within the Mawson Lakes area indicated that all property owners use mains water for consumption, and only one resident used groundwater bore only for irrigation of lawns, suggesting that there is no pathway for residents to be exposed to PFAS within the Mawson Lakes assessment area.
- Water use survey within the Parafield Gardens area revealed that one residential property and the Parafield Gardens soccer club represented recreational groundwater users, providing a reliable representation of groundwater use in this investigation area. Both water bores were reported to be registered, in working condition and used for irrigating the lawn.

Survey respondents confirmed that groundwater was not plumbed into buildings. Neither of the respondents indicated that they have rainwater tanks that could have been used to store groundwater.

The CSM indicates that potentially complete exposure pathways may exist via irrigation of
vegetable gardens with shallow groundwater, via uptake of shallow groundwater by fruiting
trees, which are then consumed and via migration of contaminated groundwater to nearby
water bodies. However, the water use survey confirmed that no residents were using water
for irrigation of vegetable gardens or fruit trees. Therefore there is not considered to be a
pathway for residents to be exposed to PFAS within the water use survey area.

9. **References**

- Airports (Environment Protection) Regulations 1997
- Airservices Australia, Managing PFC Contamination at Airports, Interim Contamination Management Strategy and Decision Framework, June 2015 (the 'Interim Framework', GHD, 2015)
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, August 2018
- Australian Bureau of Statistics, 2016, Census of Population and Housing
- Australian Commonwealth Work Health and Safety Act 2011
- Australian Standard AS 4482.1:2005 Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil
- Commonwealth Work Health and Safety Regulations 2011
- Department of Water, Land and Biodiversity Conservation. DWLBC Report 2006/10.
- Environment Protection Act 1993
- Gerges, N., 2006. Overview of the hydrogeology of the Adelaide metropolitan area. South Australia.
- NEPC 2013, National Environment Protection Council National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended 2013, National Environment Protection Council
- NHMRC, 2011, Australian Drinking Water Guidelines, Version 3.5 Updated August 2018
- PFAS National Environment Management Plan, January 2018. Heads of EPAs Australia
- SA EPA, 2015, Environment Protection (Water Quality) Policy 2015
- SA EPA, 2018, Guideline on the assessment and remediation of site contamination
- SA EPA, 2018, Site contamination policy: certification of practitioners
- South Australian Department for Mining and Energy, updated 2013, South Australian Resources Information Geoserver, access: https://map.sarig.sa.gov.au/MapViewer/SavedMap/?key=AB2D3AB32B06CE52072A27EA 0B60FC6F

10. Analytical Results Tables

- Table 1Phase 1 (December 2018) Groundwater Results
- Table 2 Phase 2 (February) Groundwater Results
- Table 3 Phase 2 (March) Groundwater Results
- Table 4 Phase 2 (May) Groundwater Results
- Table 5 Groundwater Gauging Results
- Table 6 Soil Results
- Table 7 QA/QC Groundwater Results
- Table 8 Rinsate Results
- Table 9Historical Groundwater Results

						PF	AS					
	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanesulfoni c acid (PFDS)	Perfluoro-n- hexadecanoic acid (PFHxDA)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)
	µg/L	µg/L	μg/L	µg/L	μg/L	μg/L	µg/L	µg/L	μg/L	μg/L	μg/L	µg/L
EQL	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.005	0.002	0.001	0.001	0.001
PFAS NEMP 2018 Freshwater 95%					0.13							220
PFAS NEMP 2018 Health Drinking Water			0.07		0.07							0.56
PFAS NEMP 2018 Health Recreational Water			0.7		0.7							5.6

Date	Field ID	Sample Type	Matrix Type												
15/11/2018	P9	Normal	Water	0.004	0.0016	0.027	< 0.001	0.013	< 0.001	< 0.002	< 0.005	< 0.002	< 0.001	< 0.001	< 0.001
6/12/2018	P34	Normal	Water	0.014	0.014	0.12	0.0017	0.030	< 0.001	< 0.002	< 0.005	0.0024	0.015	0.0014	0.0023
6/12/2018	P35	Normal	Water	0.0042	0.0030	0.027	< 0.001	0.037	< 0.001	< 0.002	0.0075	< 0.002	0.0028	0.0014	0.0063
6/12/2018	P36	Normal	Water	0.015	0.0078	0.085	0.0013	0.055	< 0.001	< 0.002	0.017	0.019	0.021	0.012	0.024
6/12/2018	P37	Normal	Water	0.0052	0.0043	0.037	< 0.001	0.043	< 0.001	< 0.002	< 0.005	< 0.002	0.0037	0.0025	0.0028
6/12/2018	P38	Normal	Water	0.011	0.0027	0.019	< 0.001	0.013	< 0.001	< 0.002	0.013	0.0023	0.0035	0.0022	0.0041
6/12/2018	P39	Normal	Water	0.0048	0.0015	0.0094	< 0.001	0.0035	< 0.001	< 0.002	0.010	0.021	0.029	0.0066	0.0098

						PF	AS					
	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethanol (MEFOSE)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)
	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.002	0.005	0.005	0.002
PFAS NEMP 2018 Freshwater 95%												
PFAS NEMP 2018 Health Drinking Water												
PFAS NEMP 2018 Health Recreational Water												

Date	Field ID	Sample Type	Matrix Type												
15/11/2018	P9	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	<0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P34	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P35	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P36	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P37	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P38	Normal	Water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
6/12/2018	P39	Normal	Water	<0.001	<0.001	<0.001	<0.001	<0.002	<0.002	<0.001	< 0.002	< 0.002	<0.005	<0.005	< 0.002

				PFAS			
	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Perfluorooctadecanoic acid (PFODA)
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.002	0.001	0.001	0.001	0.001	0.001	0.005
PFAS NEMP 2018 Freshwater 95%							
PFAS NEMP 2018 Health Drinking Water						0.07	
PFAS NEMP 2018 Health Recreational Water						0.7	

Date	Field ID	Sample Type	Matrix Type							
15/11/2018	P9	Normal	Water	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	0.04	< 0.005
6/12/2018	P34	Normal	Water	< 0.002	< 0.001	0.048	< 0.001	< 0.001	0.15	<0.005
6/12/2018	P35	Normal	Water	< 0.002	< 0.001	0.044	<0.001	< 0.001	0.064	<0.005
6/12/2018	P36	Normal	Water	< 0.002	< 0.001	0.013	< 0.001	< 0.001	0.14	<0.005
6/12/2018	P37	Normal	Water	< 0.002	< 0.001	0.086	< 0.001	< 0.001	0.08	<0.005
6/12/2018	P38	Normal	Water	< 0.002	< 0.001	0.093	<0.001	< 0.001	0.032	<0.005
6/12/2018	P39	Normal	Water	< 0.002	< 0.001	0.13	< 0.001	< 0.001	0.0129	<0.005

Off -Site Groundwater Use Survey Groundwater Investigation 3319051

						PF	AS					
	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanesulfoni c acid (PFDS)	Perfluoro-n- hexadecanoic acid (PFHxDA)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)
	µg/L	µg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.005	0.002	0.001	0.001	0.001
PFAS NEMP 2018 Freshwater 95%					0.13							220
PFAS NEMP 2018 Health Drinking Water			0.07		0.07							0.56
PFAS NEMP 2018 Health Recreational Water			0.7		0.7							5.6

Date	Sample ID	Sample Type	Matrix Type												
7/02/2019	P40	Normal	Water	0.0037	0.0029	0.037	< 0.002	0.020	< 0.001	<0.002	0.018	0.024	0.035	0.013	0.030
7/02/2019	P41	Normal	Water	0.0092	0.0095	0.074	< 0.002	0.032	< 0.001	<0.002	0.0084	0.0076	0.010	0.0036	0.0048
7/02/2019	P42	Normal	Water	0.0074	0.0072	0.075	< 0.002	0.043	< 0.001	<0.002	0.026	0.0079	0.014	0.0037	0.0055
7/02/2019	P43	Normal	Water	0.0039	0.0040	0.050	0.0033	0.24	< 0.001	<0.002	0.0071	<0.002	0.0047	< 0.002	0.0031
7/02/2019	P44	Normal	Water	0.11	0.16	1.3	0.013	0.072	<0.001	<0.002	0.029	0.038	0.26	0.033	0.051

						PF	AS					
	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethanol (MEFOSE)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)
	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.002	0.005	0.005	0.002
PFAS NEMP 2018 Freshwater 95%												
PFAS NEMP 2018 Health Drinking Water												
PFAS NEMP 2018 Health Recreational Water												

Date	Sample ID	Sample Type	Matrix Type												
7/02/2019	P40	Normal	Water	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
7/02/2019	P41	Normal	Water	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
7/02/2019	P42	Normal	Water	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	<0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
7/02/2019	P43	Normal	Water	< 0.002	< 0.001	< 0.001	< 0.001	< 0.002	<0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002
7/02/2019	P44	Normal	Water	<0.002	<0.001	< 0.001	< 0.001	<0.002	<0.002	<0.001	< 0.002	< 0.002	<0.005	<0.005	< 0.002

				PFAS			
	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Perfluorooctadecanoic acid (PFODA)
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.002	0.001	0.001	0.001	0.001	0.001	0.005
PFAS NEMP 2018 Freshwater 95%							
PFAS NEMP 2018 Health Drinking Water						0.07	
PFAS NEMP 2018 Health Recreational Water						0.7	

Date	Sample ID	Sample Type	Matrix Type							
7/02/2019	P40	Normal	Water	<0.002	<0.001	0.020	<0.001	<0.001	0.057	< 0.005
7/02/2019	P41	Normal	Water	<0.002	<0.001	0.033	<0.001	<0.001	0.106	<0.005
7/02/2019	P42	Normal	Water	< 0.002	<0.001	0.0043	<0.001	< 0.001	0.118	< 0.005
7/02/2019	P43	Normal	Water	<0.002	<0.001	0.13	<0.001	<0.001	0.29	< 0.005
7/02/2019	P44	Normal	Water	<0.002	<0.001	0.017	<0.001	<0.001	1.372	<0.005

						PF	AS				
	PFNS (68259-12-1)	8:2 Polyfluoroalkyl phosphate diester (8:2 diPAP)	FOUEA (2H-Perfluoro- 2-decenoic acid (8:2))	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanesulfoni c acid (PFDS)	Perfluoro-n- hexadecanoic acid (PFHxDA)	Perfluorobutanoic acid (PFBA)
	ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL		0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.005
PFAS NEMP 2018 Freshwater 95%								0.13			
PFAS NEMP 2018 Health Drinking Water						0.07		0.07			
PFAS NEMP 2018 Health Recreational Water						0.7		0.7			

Date	Sample ID	Sample Type	Matrix Type											
14/03/2019	GWP1-PFC	Normal	Water	< 0.001	<0.02	< 0.001	0.0056	0.0051	0.039	< 0.001	0.011	< 0.001	< 0.002	< 0.005
14/03/2019	GWP2-PFC	Normal	Water	< 0.001	< 0.02	< 0.001	0.0082	0.0075	0.068	< 0.001	0.039	< 0.001	< 0.002	< 0.005
14/03/2019	GWP3-PFC	Normal	Water	< 0.001	<0.02	< 0.001	0.0018	0.0011	0.0065	< 0.001	0.018	< 0.001	< 0.002	0.0083
14/03/2019	P9	Normal	Water	< 0.001	<0.02	< 0.001	0.0037	0.0017	0.019	< 0.001	0.0057	< 0.001	< 0.002	<0.005
14/03/2019	P34	Normal	Water	< 0.001	< 0.02	< 0.001	0.018	0.017	0.14	0.0019	0.025	< 0.001	< 0.02	< 0.005
14/03/2019	P35	Normal	Water	<0.01	<0.02	< 0.01	< 0.01	<0.01	0.024	<0.01	0.037	< 0.01	<0.02	<0.05
14/03/2019	P36	Normal	Water	< 0.001	< 0.02	< 0.001	0.015	0.0088	0.084	0.0012	0.05	< 0.001	< 0.002	0.016
14/03/2019	P40	Normal	Water	< 0.001	<0.02	< 0.001	0.0035	0.0027	0.038	< 0.001	0.032	< 0.001	<0.02	0.018
14/03/2019	P41	Normal	Water	< 0.001	< 0.02	< 0.001	0.0097	0.0096	0.082	0.0011	0.021	< 0.001	<0.02	0.0081
14/03/2019	P42	Normal	Water	< 0.001	<0.05	< 0.001	0.0084	0.0077	0.077	0.0016	0.035	< 0.001	<0.02	0.0068
14/03/2019	P43	Normal	Water	< 0.001	< 0.02	< 0.001	0.0035	0.0034	0.023	< 0.001	0.029	< 0.001	<0.02	< 0.005
14/03/2019	P44	Normal	Water	< 0.001	<0.02	< 0.001	0.12	0.17	1.6	0.017	0.058	<0.001	<0.02	0.028

								PFAS					
	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane sulfonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.002
PFAS NEMP 2018 Freshwater 95%				220									
PFAS NEMP 2018 Health Drinking Water				0.56									
PFAS NEMP 2018 Health Recreational Water				5.6									

Date	Sample ID	Sample Type													
14/03/2019	GWP1-PFC	Normal	< 0.002	0.0037	< 0.001	0.0011	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	<0.02	<0.02
14/03/2019	GWP2-PFC	Normal	< 0.002	0.0033	0.0011	0.0015	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002
14/03/2019	GWP3-PFC	Normal	< 0.002	< 0.001	< 0.001	0.0015	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	<0.02	<0.02
14/03/2019	P9	Normal	< 0.002	< 0.001	0.0063	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	<0.02	<0.02
14/03/2019	P34	Normal	0.0029	0.015	0.0011	0.0012	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	<0.02
14/03/2019	P35	Normal	<0.02	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.02	<0.02	<0.01	<0.02	<0.02
14/03/2019	P36	Normal	0.023	0.027	0.019	0.019	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002
14/03/2019	P40	Normal	0.028	0.037	0.012	0.028	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	<0.002	< 0.001	< 0.002	<0.02
14/03/2019	P41	Normal	0.0096	0.0097	0.0072	0.004	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.02	< 0.001	<0.02	<0.02
14/03/2019	P42	Normal	0.0059	0.011	0.0036	0.0074	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.02	< 0.001	<0.02	< 0.02
14/03/2019	P43	Normal	< 0.002	< 0.001	< 0.001	0.0013	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	<0.02	< 0.02
14/03/2019	P44	Normal	0.043	0.29	0.035	0.05	< 0.001	< 0.001	< 0.001	< 0.001	<0.002	<0.02	<0.001	<0.02	<0.02

						PFAS				
	N-Methyl perfluorooctane sulfonamidoethanol (MEFOSE)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	Perfluorooctadecanoic
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μ
EQL	0.005	0.005	0.002	0.002	0.001	0.001	0.001	0.001	0.002	0.0
PFAS NEMP 2018 Freshwater 95%										
PFAS NEMP 2018 Health Drinking Water									0.07	
PFAS NEMP 2018 Health Recreational Water									0.7	

Date	Sample ID	Sample Type										
14/03/2019	GWP1-PFC	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.0057	< 0.001	< 0.001	0.05	< 0.005
14/03/2019	GWP2-PFC	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.019	< 0.001	< 0.001	0.107	< 0.005
14/03/2019	GWP3-PFC	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.023	< 0.001	< 0.001	0.0245	< 0.005
14/03/2019	P9	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.0078	< 0.001	< 0.001	0.0247	< 0.005
14/03/2019	P34	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.0087	< 0.001	< 0.001	0.165	< 0.005
14/03/2019	P35	Normal	<0.05	<0.05	<0.01	< 0.01	< 0.01	0.065	< 0.01	<0.01	0.061	<0.05
14/03/2019	P36	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	0.134	< 0.005
14/03/2019	P40	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.25	< 0.001	< 0.001	0.07	< 0.005
14/03/2019	P41	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.19	< 0.001	< 0.001	0.103	< 0.005
14/03/2019	P42	Normal	< 0.005	< 0.05	< 0.002	< 0.02	< 0.001	0.024	< 0.001	< 0.001	0.112	<0.05
14/03/2019	P43	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.0061	< 0.001	< 0.001	0.052	< 0.05
14/03/2019	P44	Normal	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	0.031	< 0.001	< 0.001	1.658	< 0.05

Analytical Results Tables Table 4 - Phase 2 (May) Groundwater Results

Darafield
Paramete

				PFAS													
				Perfluorobutane sulfonic acid (PFBS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer Sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	PFAS (Sum of Total)(WA DER List)
				µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL				0.02	0.02	0.01	0.1	0.02	0.02	0.02	0.01	0.05	0.05	0.05	0.05	0.01	0.01
PFAS NEMP 2018	Freshwater 95%					0.13					220						
PFAS NEMP 2018	Health Drinking Water					0.07					0.56					0.07	
PFAS NEMP 2018	Health Recreational Water					0.7					5.6					0.7	
Date	Sample ID	Sample Type	Matrix Type														
13/05/2019	GWP1-PFC	Normal	water	< 0.02	0.04	0.02	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.06
13/05/2019	GWP2-PFC	Normal	water	< 0.02	< 0.02	0.03	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.03	0.03
13/05/2019	GWP3-PFC	Normal	water	< 0.02	0.07	0.05	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.12	0.12
13/05/2019	P34	Normal	water	0.03	0.14	0.04	<0.1	< 0.02	0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.18	0.23
13/05/2019	P35	Normal	water	< 0.02	0.03	0.04	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.07
13/05/2019	P36	Normal	water	0.03	0.10	0.07	<0.1	0.02	0.03	< 0.02	0.02	< 0.05	< 0.05	< 0.05	< 0.05	0.17	0.27
13/05/2019	P37	Normal	water	< 0.02	0.04	0.04	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.08	0.08
13/05/2019	P40	Normal	water	< 0.02	0.03	0.03	<0.1	0.03	0.05	< 0.02	0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.06	0.19
13/05/2019	P41	Normal	water	0.02	0.12	0.05	<0.1	< 0.02	< 0.02	< 0.02	<0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.17	0.19
13/05/2019	P42	Normal	water	0.02	0.09	0.07	<0.1	< 0.02	< 0.02	< 0.02	0.02	< 0.05	< 0.05	< 0.05	< 0.05	0.16	0.20
13/05/2019	P43	Normal	water	< 0.02	0.03	0.04	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	< 0.05	< 0.05	< 0.05	< 0.05	0.07	0.07
13/05/2019	P44	Normal	water	0.14	1.74	0.13	< 0.1	0.05	0.37	0.05	0.08	< 0.05	< 0.05	< 0.05	< 0.05	1.87	2.56

Id Airport Off-site Groundwater Use Survey and Investigation 3319051

Groundwater Gauging Results

Site Location:	Parafield Airport	Client:	Adelaide Airport Limited (AAL)
Job Number:	3319051	Latest GME:	13/05/2019
Entered By:	VB	Date:	14/05/2019

Groundwater Monitoring Well I.D	Gauging Date	TOC Elevation surveyed	SWL (mbTOC)	Depth to base of well (m bTOC)	RWL (mAHD)	Comments / field observations
	14/03/2019		6.046	9.423		Sampled. Unable to ascertain survey data.
GWFIFFC	13/05/2019		5.802	9.935		Sampled. Unable to ascertain survey data.
	14/03/2019		3.710	6.713		Sampled. Unable to ascertain survey data.
GWF2-FFC	13/05/2019		3.417	6.820		Sampled. Unable to ascertain survey data.
	7/12/2016		2.744	5.253		N/A
	7/02/2019		3.748	5.241		Standpipe. No sample.
GWF3-FFC	14/03/2019		3.909	5.283		Sampled. Unable to ascertain survey data.
	13/05/2019		3.819	5.375		Sampled. Unable to ascertain survey data.
	18/08/2016		1.078	5.8	5.382	N/A
	23/11/2016		1.322	5.899	5.138	N/A
PO	15/11/2018	6 460	1.817	6	4.643	Sampled. QA01.
ГЭ	6/12/2018	0.400	1.771	5.962	4.689	Sampled. Sample not analysed
	7/02/2019		2.391	5.914	4.069	Gatic. No sample.
	14/03/2019		2.567	5.926	3.893	Sampled.
D17	24/11/2016	6.024	1.338	4.401	5.586	N/A
F17	7/02/2019 6.924		2.432	4.333	4.492	Gatic. No sample.

Analytical Results Tables Table 5 - Groundwater Gauging Results

P18 7/02/2019 7.2.1 2.331 4.440 Gatic. No sample. Well annulus blocked. P33 1001/2018 3.668 6.37 -3.668 N/A P34 6/12/2019 3.163 5.451 -3.163 Standpipe. No sample. Unable to ascertain survey data. P34 7/02/2019 8.383 3.361 5.871 5.02 Sampled. QA02. P36 6/12/2018 3.915 5.852 Sampled. QA01. Sampled. 6/12/2019 10.081 3.439 6.072 6.642 N/A. P36 7/02/2019 10.081 3.654 7.101 6.527 Gatic. No sample. 14/03/2019 10.081 3.654 7.101 6.527 Gatic. No sample. 7/02/2019 7.625 3.193 6.281 4.432 Gatic. No sample. 14/03/2019 7.625 3.193 6.281 4.432 Gatic. No sample. 13/05/2019 7.625 3.193 6.222 Earnpled. Earnpled. 14/03/2019 7.625 3.19	D19	24/11/2016	7 271	0.956	3.682	6.315	N/A
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FTO	7/02/2019	1.211	2.331		4.940	Gatic. No sample. Well annulus blocked.
103 7/02/2019 3.163 5.451 -3.163 Standpipe. No sample. Unable to ascertain survey data. P34 7/02/2019 8.383 3.361 5.871 5.022 Sampled. OAO2. 14/03/2019 8.383 3.266 5.709 4.457 Standpipe. No sample. Sampled. 14/03/2019 6/12/2018 3.915 5.852 Sampled. Sampled. 16/01/2019 10.081 3.544 7.108 7.035 Sampled. OAO1. 14/03/2019 10.081 3.554 7.101 6.527 Gatic. No sample. 14/03/2019 10.081 3.554 7.137 - - 13/05/2019 7.02/2019 7.625 3.133 6.281 4.432 Gatic. No sample. 13/05/2019 7.625 3.333 5.268 4.392 Sampled. - 7/02/2019 7.625 3.333 5.268 4.392 Sampled. - 13/05/2019 7.625 3.333 5.268 4.392 Sampled. -	D33	10/01/2018		3.668	6.37	-3.668	N/A
6/12/2018 3.831 3.831 5.871 5.022 Sampled. OA02. 7/02/2019 3.926 5.709 4.457 Standpipe. No sample. 13/05/2019 3.915 5.852 5.709 4.457 Standpipe. No sample. 8.383 6/12/2018 3.915 5.852 5.709 4.457 Sampled. OA01. 13/05/2019 10.081 3.046 7.108 7.035 Sampled. OA01. 14/03/2019 10.081 3.554 7.101 6.527 Gatic. No sample. 14/03/2019 10.081 3.554 7.101 6.527 Gatic. No sample. 13/05/2019 3.718 7.137 6.702 Gatic. No sample. 13/05/2019 7.625 3.193 6.281 4.432 Gatic. No sample. 13/05/2019 7.625 3.193 5.286 4.292 Sampled. 13/05/2019 7.521 2.959 6.971 3.813 Gatic. No sample. 13/05/2019 7.521 2.959 6.971 3.813 Gatic. No sample.	F 33	7/02/2019		3.163	5.451	-3.163	Standpipe. No sample. Unable to ascertain survey data.
P34 7/02/2019 14/03/2019 14/03/2019 8.383 4.079 5.647 5.647 4.457 4.004 Standpipe. No sample. 6/12/2018 4.079 5.647 4.304 Sampled. 6/12/2018 3.915 5.687 4.304 Sampled. 7/02/2019 10.081 3.439 6.072 6.642 N/A. 14/03/2019 10.081 3.554 7.101 6.527 Gatic. No sample. 14/03/2019 10.081 7.135 Sampled. N/A. 7/02/2019 10.081 7.137 - - 6/12/2018 7.625 3.193 6.281 4.432 Gatic. No sample. 7/02/2019 7.625 3.333 5.268 4.292 Sampled. 13/05/2019 7.625 3.333 5.268 4.292 Sampled. 7/02/2019 6.772 2.491 5.991 4.281 Sampled. 13/05/2019 6.772 2.284 5.317 5.237 Sampled. 7/02/2019 7.521 2.284 5.956		6/12/2018		3.361	5.871	5.022	Sampled. QA02.
14/03/2019 13/05/2019 13/05/2019 4.079 5.647 4.304 Sampled. 13/05/2019 3.915 5.852 - </td <td>D24</td> <td>7/02/2019</td> <td>0 202</td> <td>3.926</td> <td>5.709</td> <td>4.457</td> <td>Standpipe. No sample.</td>	D24	7/02/2019	0 202	3.926	5.709	4.457	Standpipe. No sample.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F 34	14/03/2019	0.303	4.079	5.647	4.304	Sampled.
$ \begin{array}{c} \begin{array}{c} 6/12/2018 \\ 16(01/2019 \\ 14(03/2019 \\ 14/03/2019 \\ 13/05/2019 \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} 3.046 \\ 7.108 \\ 3.439 \\ 6.072 \\ 6.642 \\ 7.02 \\ 6.642 \\ 7.01 \\ 6.527 \\ 6.642 \\ 8ampled. \\ Sampled. \end{array} \\ \begin{array}{c} NA \\ Sampled. \\ Sampled. \\ Sampled. \\ Sampled. \\ \end{array} \end{array} $		13/05/2019		3.915	5.852		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		6/12/2018		3.046	7.108	7.035	Sampled. QA01.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		16/01/2019]	3.439	6.072	6.642	N/A.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P35	7/02/2019	10.081	3.554	7.101	6.527	Gatic. No sample.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14/03/2019		4.813	7.141	5.268	Sampled.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		13/05/2019		3.718	7.137		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		6/12/2018		2.721	5.291	4.904	Sampled.
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Dae	7/02/2019	7 6 2 5	3.193	6.281	4.432	Gatic. No sample.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	F30	14/03/2019	7.025	3.333	5.268	4.292	Sampled.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		13/05/2019		3.220	6.222		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		6/12/2018		2.491	5.991	4.281	Sampled.
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	P37	7/02/2019	6.772	2.959	6.971	3.813	Gatic. No sample.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		13/05/2019		2.915	5.955		
P36 7/02/2019 7.321 2.814 5.267 4.707 Gatic. No sample. P39 6/12/2018 -6.695 1.284 5.968 5.411 Sampled. 7/02/2019 -6.695 1.679 5.979 5.016 Gatic. No sample. 7/02/2019 -7/02/2019 - 2.986 5.908 2.768 Gatic. Sampled. 7/02/2019 5.754 3.132 5.923 2.622 Sampled. 13/05/2019 5.754 3.132 5.93 - 7/02/2019 - 2.953 5.93 - 7/02/2019 - 3.317 5.843 2.957 Gatic. Sampled. 7/02/2019 - 3.34 5.88 - - P41 14/03/2019 - 3.476 5.948 3.966 Gatic. Sampled. P42 14/03/2019 - 3.601 5.93 - -	D20	6/12/2018	7 5 2 1	2.284	5.317	5.237	Sampled.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F30	7/02/2019	7.521	2.814	5.267	4.707	Gatic. No sample.
P39 7/02/2019 6.693 1.679 5.979 5.016 Gatic. No sample. P40 7/02/2019 2.986 5.908 2.768 Gatic. Sampled. P40 14/03/2019 5.754 3.132 5.923 2.622 Sampled. P41 13/05/2019 2.953 5.93 - - P41 14/03/2019 6.274 3.317 5.843 2.957 Gatic. Sampled. P41 14/03/2019 6.274 3.429 5.776 2.845 Sampled. P42 7/02/2019 7.442 3.476 5.948 3.966 Gatic. Sampled. QA01 & QA02. P42 14/03/2019 7.442 3.634 5.927 3.808 Sampled.	D20	6/12/2018	6 605	1.284	5.968	5.411	Sampled.
P40 7/02/2019 14/03/2019 5.754 2.986 5.908 2.768 Gatic. Sampled. 13/05/2019 5.754 3.132 5.923 2.622 Sampled. P41 7/02/2019 2.953 5.93	F 39	7/02/2019	0.095	1.679	5.979	5.016	Gatic. No sample.
P40 14/03/2019 5.754 3.132 5.923 2.622 Sampled. 13/05/2019 13/05/2019 2.953 5.93		7/02/2019		2.986	5.908	2.768	Gatic. Sampled.
13/05/2019 2.953 5.93 Image: colored	P40	14/03/2019	5.754	3.132	5.923	2.622	Sampled.
7/02/2019 3.317 5.843 2.957 Gatic. Sampled. P41 14/03/2019 6.274 3.429 5.776 2.845 Sampled. 13/05/2019 3.34 5.88		13/05/2019		2.953	5.93		
P41 14/03/2019 6.274 3.429 5.776 2.845 Sampled. 13/05/2019 3.34 5.88		7/02/2019		3.317	5.843	2.957	Gatic. Sampled.
13/05/2019 3.34 5.88 End 7/02/2019 7.442 3.476 5.948 3.966 Gatic. Sampled. QA01 & QA02. P42 14/03/2019 7.442 3.634 5.927 3.808 Sampled. 13/05/2019 3.601 5.93 5.93 Sampled.	P41	14/03/2019	6.274	3.429	5.776	2.845	Sampled.
7/02/2019 7.442 3.476 5.948 3.966 Gatic. Sampled. QA01 & QA02. 14/03/2019 7.442 3.634 5.927 3.808 Sampled. 13/05/2019 3.601 5.93 5.93 Sampled.		13/05/2019		3.34	5.88		
P42 14/03/2019 1.442 3.634 5.927 3.808 Sampled. 13/05/2019 3.601 5.93		7/02/2019	7 4 4 0	3.476	5.948	3.966	Gatic. Sampled. QA01 & QA02.
13/05/2019 3.601 5.93	P42	14/03/2019	/.442	3.634	5.927	3.808	Sampled.
		13/05/2019		3.601	5.93		

Analytical Results Tables Table 5 - Groundwater Gauging Results

	7/02/2019		3.931	5.604	5.026	Gatic. Sampled.
P43	14/03/2019	8.957	4.079		4.878	Sampled. Well annulus blocked. Unable to record bore depth.
	13/05/2019		4.007	4.86		
	7/02/2019		3.887	6.028	8.848	Gatic. Sampled.
P44	14/03/2019	12.735	4.017	5.941	8.718	Sampled.
	13/05/2019		3.832		5.938	

		Inorg	anics		Metal			PFAS			
	pH (Initial)	pH (Final)	TCLP Fluid	Soil pH	Total Solids	DENIS (68760-17.		8:2 Polyfluoroalkyl	priospriate diester (o.z diPAP)	FOUEA (2H-Perfluoro-2-	decenoic acid (8:2))
	pH Units	pH Units	PH	PH	mg/kg	mg/kg	ug/L	mg/kg	µg/L	mg/kg	µg/L
EQL					1,000			0.002		0.001	
PFAS NEMP 2018 Health Drinking Water											
PFAS NEMP 2018 Health Industrial/Commercial											

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	5	5	4.93	5	948,000	< 0.001	< 0.01	<0.002	< 0.02	< 0.001	< 0.01
HA01	14/03/2019	HA-0.1-0.2	5	5	4.93	5	928,000	< 0.001	<0.01	<0.002	<0.02	<0.001	<0.01

	Perfluorobutane sulfonic	acid (PFBS)	Perfluoropentane	sulfonic acid (PFPeS)	Perfluorohexane sulfonic	acid (PFHxS)	Perfluoroheptane	sulfonic acid (PFHpS)	Perfluorooctane sulfonic	acid (PFOS)	Perfluorodecanesulfonic
	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg
EQL	0.001		0.001		0.001		0.001		0.002		
PFAS NEMP 2018 Health Drinking Water						0.07				0.07	
PFAS NEMP 2018 Health Industrial/Commercial					20				20		

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	<0.002	< 0.02	< 0.001
HA01	14/03/2019	HA-0.1-0.2	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.002	0.024	< 0.001

	PF	AS									
	acid (PFDS)	Perfluoro-n-	(PFHxDA)	Perfluorobutanoic acid	(PFBA)	Perfluoropentanoic acid	(PFPeA)	Perfluorohexanoic acid	(PFHxA)	Perfluoroheptanoic acid	(РЕНРА)
	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L
EQL		0.002				0.002		0.001		0.001	
PFAS NEMP 2018 Health Drinking Water											
PFAS NEMP 2018 Health Industrial/Commercial											

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	< 0.01	<0.002	< 0.02	< 0.002	< 0.05	<0.002	< 0.02	<0.001	< 0.01	< 0.001	<0.01
HA01	14/03/2019	HA-0.1-0.2	< 0.01	<0.002	< 0.02	0.0027	< 0.05	< 0.002	< 0.02	<0.001	< 0.01	<0.001	< 0.01

											PF
	Perfluorooctanoic acid	(PFOA)	Perfluorononanoic acid	(PFNA)	Perfluorodecanoic acid	(PFDA)	Perfluoroundecanoic	acid (PFUnDA)	Perfluorododecanoic	acid (PFDoDA)	Perfluorotridecanoic acid
	mg/kg	μg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	μg/L	mg/kg	μg/L	mg/kg
EQL	0.001		0.001		0.001		0.002		0.002		0.002
PFAS NEMP 2018 Health Drinking Water		0.56									
PFAS NEMP 2018 Health Industrial/Commercial	50										

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.002	< 0.01	<0.002	< 0.01	< 0.002
HA01	14/03/2019	HA-0.1-0.2	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.002	< 0.01	< 0.002	< 0.01	<0.002

AS N-Methyl perfluorooctane sulfonamide (MeFOSA) Perfluorotetradecanoic acid (PFTeDA) Perfluorooctane sulfonamide (FOSA) (PFTrDA) mg/kg 0.002 µg/L mg/kg µg/L mg/kg µg/L mg/kg µg/L EQL 0.002 0.002 0.001 PFAS NEMP 2018 Health Drinking Water PFAS NEMP 2018 Health Industrial/Commercial

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	<0.02	< 0.002	< 0.02	< 0.001	< 0.01	<0.002	< 0.02	< 0.002	< 0.02	<0.005	< 0.05
HA01	14/03/2019	HA-0.1-0.2	< 0.02	< 0.002	<0.02	< 0.001	< 0.01	<0.002	<0.02	<0.002	< 0.02	<0.005	< 0.05

N-Ethyl perfluorooctane sulfonamide (EtFOSA)		N-Methyl perfluorooctane	(MEFOSE)
	µg/L	mg/kg	µg/L
		0.005	

									PF	AS	
	Sulfonamidoethanol T/br (EtFOSE) 7		N-Methyl perfluorooctane	N-Methyl perfluorooctar sulfonamidoacetic acid (MeFOSAA)		N-Ethyl perfluorooctane sulfonamidoacetic acid EtFOSAA)		sulfonic acid (4:2 FTS)	:2 Fluorotelomer ulfonate (6:2 FTS)		8:2 Fluorotelomer
	mg/kg	µg/L	mg/kg	μg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg
EQL	0.005		0.002		0.002		0.001		0.001		0.001
PFAS NEMP 2018 Health Drinking Water											
PFAS NEMP 2018 Health Industrial/Commercial											

Location Code	Date	Field ID											
HA01	14/03/2019	HA-0-0.1	< 0.005	< 0.05	< 0.002	< 0.01	<0.002	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001
HA01	14/03/2019	HA-0.1-0.2	< 0.005	< 0.05	< 0.002	< 0.01	< 0.002	< 0.01	< 0.001	< 0.01	< 0.001	< 0.01	< 0.001

	sulfonic acid (8:2 FTS)	10:2 Fluorotelomer	sulfonic acid (10:2 FTS)	Sum of PFHxS and	PFOS	Perfluorooctadecanoic	acid (PFODA)
	µg/L	mg/kg	µg/L	mg/kg	µg/L	mg/kg	µg/L
EQL		0.002				0.005	
PFAS NEMP 2018 Health Drinking Water					0.07		
PFAS NEMP 2018 Health Industrial/Commercial				20			

Location Code	Date	Field ID							
HA01	14/03/2019	HA-0-0.1	<0.01	<0.002	< 0.01	<0.002	< 0.02	< 0.005	< 0.05
HA01	14/03/2019	HA-0.1-0.2	< 0.01	<0.002	< 0.01	< 0.002	0.024	< 0.005	< 0.05

Parafield Airport Off - site Groundwater Use Survey Groundwater Investigation 3319051

Analytical Results Tables Table 7 - QA/QC Groundwater Results

					NA															
				G PFNS (68259-12-1)	동:2 Polyfluoroalkyl 토 phosphate diester (8:2 diPAP)	동 FOUEA (2H-Perfluoro- 군 2-decenoic acid (8:2))	E Perfluorobutane ⊃Sulfonic acid (PFBS)	E Perfluoropentane Salfonic acid (PFPeS)	E Perfluorohexane Sulfonic acid (PFHxS)	E Perfluoroheptane Salfonic acid (PFHpS)	는 Perfluorooctane 더 Sulfonic acid (PFOS)	ରୁ Perfluorodecanesulfoni ମୁ c acid (PFDS)	Perfluoro-n- Ğ hexadecanoic acid P(PFHxDA)	죠 Perfluorobutanoic acid 거(PFBA)	E Perfluoropentanoic Sacid (PFPeA)	년 Ferfluorohexanoic acid 구 (PFHxA)	E Perfluoroheptanoic ⊃acid (PFHpA)	년 Ferfluorooctanoic acid 구(PFOA)	든 Perfluorononanoic acid 구 (PFNA)	년 도 Perfluorodecanoic acid 구 (PFDA)
EQL				0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.005	0.002	0.001	0.001	0.001	0.001	0.001
Date	Field ID	Interlab or Intralab	Matrix Type	7																
	P34			< 0.001	< 0.002	< 0.001	0.014	0.014	0.12	0.0017	0.030	< 0.001	< 0.002	< 0.005	0.0024	0.015	0.0014	0.0023	< 0.001	< 0.001
6/12/2018	QA02	Intralab	water	< 0.001	< 0.002	< 0.001	0.014	0.013	0.12	0.0016	0.031	< 0.001	< 0.002	< 0.005	0.0025	0.014	0.0011	0.0021	< 0.001	< 0.001
	1-	RPD		0	0	0	0	7	0	6	3	0	0	0	4	7	24	9	0	0
0/10/00/0	P35			< 0.001	< 0.002	< 0.001	0.0042	0.0030	0.027	< 0.001	0.037	< 0.001	< 0.002	0.0075	< 0.002	0.0028	0.0014	0.0063	< 0.001	< 0.001
6/12/2018	QA01	Intralab	water	< 0.001	< 0.002	< 0.001	0.0038	0.0029	0.026	<0.001	0.037	< 0.001	< 0.002	0.0078	< 0.002	0.0029	0.0014	0.0057	<0.001	<0.001
	D40	RPD		0	0	0	10	3	4	0	0 0000	0	0	4	0	4	0 012	10	0	0
1//03/2010	P40	Intralab	water	<0.001	<0.02	< 0.001	0.0033	0.0027	0.035	<0.001	0.032	<0.001	<0.02	0.018	0.028	0.037	0.012	0.028	<0.001	<0.001
14/00/2013	QUI I	RPD	Water	0	0.00	0	9	4	8	0	29	0	0	0.010	4	0.007	8	4	0	0
	GWP2-PFC				-	-	< 0.02		< 0.02	-	0.03	-	-	<0.1	< 0.02	< 0.02	< 0.02	< 0.01	<u> </u>	
13/05/2019	FD02	Intralab	water				< 0.02		< 0.02		0.03			<0.1	< 0.02	< 0.02	< 0.02	< 0.01		
	· · · · · · · · · · · · · · · · · · ·	RPD	•				0		0		0			0	0	0	0	0		
	GWP3-PFC						< 0.02		0.07		0.05			<0.1	< 0.02	< 0.02	< 0.02	< 0.01		
13/05/2019	FD03	Intralab	water				< 0.02		0.08		0.05			<0.1	< 0.02	< 0.02	< 0.02	< 0.01		
		RPD					0		13		0			0	0	0	0	0		
	P44						0.14		1.74		0.13			<0.1	0.05	0.37	0.05	0.08		
13/05/2019	FD01	Intralab	water				0.15		1.79		0.14			<0.1	0.05	0.37	0.04	0.07		
		RPD					7		3		7			0	0	0	22	13		

Parafield Airport Off-Site Groundwater Use Survey Groundwater Inversigation 3319051

Analytical Results Tables Table 7 - QA/QC Groundwater Results

					PI	AS									
						Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl perfluorooctane suffonamide (MeFOSA)	N-Ethyl perfluorooctane sulfonamide (EtFOSA)	N-Methyl perfluorooctane sulfonamidoethanol (MEFOSE)	N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)
50				µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL				0.001	0.001	0.002	0.002	0.001	0.002	0.002	0.005	0.005	0.002	0.002	0.001
Date	Field ID	Interlab or Intralab	Matrix Type												
	P34			< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002	< 0.002	< 0.00
6/12/2018	QA02	Intralab	water	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002	< 0.002	< 0.00
		RPD		0	0	0	0	0	0	0	0	0	0	0	0
0/10/0010	P35			< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002	< 0.002	< 0.00
6/12/2018	QA01	Intralab	water	<0.001	< 0.001	<0.002	<0.002	< 0.001	< 0.002	< 0.002	<0.005	<0.005	< 0.002	<0.002	<0.00
	D40	RFD		<0.001	<0.001	<0.002	<0.002	<0.001	<0.002	<0.02	<0.005	<0.005	<0.002	<0.002	<0.001
14/03/2019	Γ40 ΩΔ01	Intralab	water	<0.001	<0.001	<0.002	<0.002	<0.001	<0.002	<0.02	<0.005	<0.005	<0.002	<0.002	<0.00
11/00/2010	di lo l	RPD	Haloi	0	0	0	0	0	0	0	0	0	0	0	0
	GWP2-PFC														< 0.05
13/05/2019	FD02	Intralab	water									1	1	1	< 0.05
		RPD													0
	GWP3-PFC														< 0.05
13/05/2019	FD03	Intralab	water												< 0.05
		RPD													0
	P44											<u> </u>	<u> </u>	<u> </u>	< 0.05
13/05/2019	FD01	Intralab	water									<u> </u>	<u> </u>		< 0.05
		RPD												<u> </u>	0

Parafield Airport Off-Site Groundwater Use Survey Groundwater Inversigation 3319051

6:2 Fluorotelomer Sulfonate (6:2 FTS)	8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	PFAS (Sum of Total)(WA DER List)
µg/L	µg/L	µg/L	µg/L	µg/L
0.001	0.001	0.001	0.01	0.01

1	0.048	< 0.001	< 0.001		
1	0.036	< 0.001	< 0.001		
	29	0	0		
1	0.044	< 0.001	< 0.001		
1	0.040	< 0.001	<0.001		
	10	0	0		
1	0.25	< 0.001	<0.001		
1	0.38	< 0.001	<0.001		
	41	0	0		
	< 0.05	< 0.05	< 0.05	0.03	0.03
	< 0.05	< 0.05	< 0.05	0.03	0.03
	0	0	0	0	0
	< 0.05	< 0.05	< 0.05	0.12	0.12
	< 0.05	< 0.05	< 0.05	0.13	0.13
	0	0	0	8	8
	< 0.05	< 0.05	< 0.05	1.87	2.56
	< 0.05	< 0.05	< 0.05	1.93	2.61
	0	0	0	3	2

				Ferfluorooctadecanoic
QL				0.005
ate	Field ID	Interlab or Intralab	Matrix Type	
6/12/2018	P34 QA02	Intralab	water	<0.005 <0.005
		RPD		0
6/12/2018	P35 QA01	Intralab	water	<0.005 <0.005
		RPD		0
14/03/2019	P40 QA01	Intralab	water	<0.005 0.0055
		RPD		10
13/05/2019	GWP2-PFC FD02	Intralab	water	
		RPD		
13/05/2019	GWP3-PFC FD03	Intralab	water	
		RPD		
13/05/2019	P44 FD01	Intralab	water	
		RPD		

Parafield Airport Off-Site Groundwater Use Survey Groundwater Inversigation 3319051

Analytical Results Tables Table 8 - Rinsate Results

						NA													
					PFNS (68259-12-1)	8:2 Polyfluoroalkyl phosphate diester (8:2 diPAP)	FOUEA (2H-Perfluoro- 2-decenoic acid (8:2))	Perfluorobutane sulfonic acid (PFBS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorohexane sulfonic acid (PFHxS)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluorooctane sulfonic acid (PFOS)	Perfluorodecanesulfoni c acid (PFDS)	Perfluoro-n- hexadecanoic acid (PFHxDA)	Perfluorobutanoic acid (PFBA)	Perfluoropentanoic acid (PFPeA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorooctanoic acid (PFOA)
					ug/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL					0.001	0.002	0.001	0.001	0.001	0.001	0.001	0.002	0.001	0.002	0.005	0.002	0.001	0.001	0.001
Location Code	Date	Field ID	Sample Type	Matrix Type															
	14/03/2019	RB01	Rinsate	water	< 0.001	< 0.02	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.005	< 0.002	< 0.001	< 0.001	< 0.001
RB	13/05/2019	RB	Rinsate	water				< 0.02		< 0.02		< 0.01			<0.1	< 0.02	< 0.02	< 0.02	< 0.01
RB01	6/12/2018	RB01	Rinsate	water	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	< 0.002	< 0.005	< 0.002	< 0.001	< 0.001	< 0.001

Parafield Airport Off -Site Groundwater Use Survey Groundwater Investigation 3319051

02	< 0.005	< 0.002	< 0.001	< 0.001	< 0.001
	<0.1	< 0.02	< 0.02	< 0.02	<0.01
02	< 0.005	< 0.002	< 0.001	< 0.001	< 0.001

Analytical Results Tables Table 8 - Rinsate Results

								PF	AS										
					Perfluorononanoic acid (PFNA)	Perfluorodecanoic acid (PFDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluorododecanoic acid (PFDoDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorooctane sulfonamide (FOSA)	N-Methyl Serfluorooctane sulfonamide (MeFOSA)	N-Ethyl oerfluorooctane sulfonamide (EtFOSA)	N-Methyl oerfluorooctane sulfonamidoethanol (MEFOSE)	v-Ethyl oerfluorooctane sulfonamidoethanol (EtFOSE)	N-Methyl Sorfluorooctane sulfonamidoacetic acid (MeFOSAA)	N-Ethyl Jerfluorooctane sulfonamidoacetic acid (EFFOSAA)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	5:2 Fluorotelomer Sulfonate (6:2 FTS)
					µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL					0.001	0.001	0.001	0.001	0.002	0.002	0.001	0.002	0.002	0.005	0.005	0.002	0.002	0.001	0.001
ł					•	•	•	•	•	•	•	•	•	•	•	•			•
Location Code	Date	Field ID	Sample Type	Matrix Type															
	14/03/2019	RB01	Rinsate	water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	< 0.001
RB	13/05/2019	RB	Rinsate	water														< 0.05	< 0.05
RB01	6/12/2018	RB01	Rinsate	water	< 0.001	< 0.001	< 0.001	< 0.001	< 0.002	< 0.002	< 0.001	< 0.002	< 0.002	< 0.005	< 0.005	< 0.002	< 0.002	< 0.001	< 0.001

Parafield Airport Off -Site Groundwater Use Survey Groundwater Investigation 3319051

05	< 0.005	<0.002	< 0.002	< 0.001	< 0.001
				< 0.05	< 0.05
05	<0.005	<0.002	<0.002	<0.001	< 0.001

EQL

Analytical Results Tables Table 8 - Rinsate Results

8:2 Fluorotelomer sulfonic acid (8:2 FTS)	10:2 Fluorotelomer sulfonic acid (10:2 FTS)	Sum of PFHxS and PFOS	PFAS (Sum of Total)(WA DER List)	Perfluorooctadecanoic acid (PFODA)
µg/L	µg/L	µg/L	µg/L	µg/L
0.001	0.001	0.01	0.01	0.005

	-								
Location Code	Date	Field ID	Sample Type	Matrix Type					
	14/03/2019	RB01	Rinsate	water	< 0.001	< 0.001			< 0.005
RB	13/05/2019	RB	Rinsate	water	< 0.05	< 0.05	< 0.01	< 0.01	
RB01	6/12/2018	RB01	Rinsate	water	< 0.001	< 0.001			< 0.005

Parafield Airport Off -Site Groundwater Use Survey Groundwater Investigation 3319051

Analytical Results Tables Table 9 - Historical Groundwater Results

			PFOS/PFHxS		ΡΕΟΔ (μg/L)
			(μg/L)	ΠΟ3 (μg/ L)	ΠΟΑ (μg/ L)
	NEMP Drinking Water		0.07		0.56
Criteria	NEMP Recreational		0.7		5.6
	Interim Freshwater 95%			0.13	220
Well I.D.	Date	Firm			
BGW/3	15/08/2016	GHD	<0.01	<0.01	<0.01
BGWS	23/11/2016	GHD	0.01	0.01	<0.01
BGW4	15/08/2016	GHD	0.03*	<0.01	<0.01
	27/05/2016	EP	0.061	0.014	<0.005
	31/08/2018	Golder	0.058*	<0.02	<0.01
GWEIFE	14/03/2019	GHD	0.05	0.011	0.0011
	13/05/2019	GHD	0.06	0.02	0.02
	27/05/2016	EP	0.055	0.044	<0.005
	31/08/2018	Golder	0.042*	0.032	<0.01
GWP2-PFC	14/03/2019	GHD	0.107	0.039	0.0015
	24/04/2019	EP	0.0361		0.0036
	13/05/2019	GHD	0.03	0.03	0.03
	27/05/2016	EP	0.102	0.03	<0.005
	7/12/2016	GHD	0.11	0.04	<0.01
	13/07/2017	Golder	0.11	0.04	<0.02
GWP3-PFC	31/08/2018	Golder	0.114*	0.032	<0.01
	14/03/2019	GHD	0.0245	0.018	0.0015
	24/04/2019	EP	0.121		0.004
	13/05/2019	GHD	0.12	0.05	0.05
GWP4-PFC	27/05/2016	EP	0.0057	<0.005	<0.005
GWP5-PFC	15/08/2016	GHD	0.03*	<0.01	<0.01
	15/08/2016	GHD	97.7	72.8	1.28
	15/08/2016	GHD	97.7	72.8	1.28
GWP0-PFC	23/11/2019	GHD	88.7	67.3	1.36
	5/12/2017	GHD	226	180	2.7
	14/06/2016	GHD	0.11*	<0.01	0.09
P1	22/11/2016	GHD	7.99	5.33	0.08
	4/12/2017	GHD	0.51	0.41	<0.01
50	14/06/2016	GHD	0.25	0.04	<0.01
P3	22/11/2016	GHD	0.55	0.25	<0.01
	14/06/2016	GHD	1.68	0.48	0.05
DC	15/08/2016	GHD	6.58	4.35	0.05
Po	23/11/2016	GHD	5.27	3.63	0.05
	4/12/2017	GHD	6.3	4.5	0.07
P8	17/03/2016	EP	0.081	0.013	<0.005
	15/08/2016	GHD	0.07	0.01	<0.01
	22/11/2016	GHD	0.11	0.04	<0.01
	15/08/2016	GHD	0.06	0.02	<0.01
	23/11/2016	GHD	0.12	0.06	<0.01
Р9	31/08/2018	Golder	0.04*	<0.02	<0.01
	6/12/2018	GHD	0.04	0.013	<0.001
	14/03/2019	GHD	0.0247	0.0057	<0.001

Analytical Results Tables Table 9 - Historical Groundwater Results

			PFOS/PFHxS	PEOS(ug/L)	
			(µg/L)	ρρος (μg/l)	PFOA (µg/L)
	NEMP Drinking \	Water	0.07		0.56
Criteria	NEMP Recreational		0.7		5.6
	Interim Freshwa	ter 95%		0.13	220
Well I.D.	Date	Firm			
	15/08/2016	GHD	<0.05	<0.05	<0.05
P10	22/11/2016	GHD	0.1	0.02	<0.01
	5/12/2017	GHD	0.08	<0.01	<0.01
	15/08/2016	GHD	7.35	3.44	0.06
P11	23/11/2016	GHD	15.1	5.65	0.2
	13/07/2017	Golder	5.7	2.8	0.049
D12	24/11/2016	GHD	80.9	65.7	0.79
P12	5/12/2017	GHD	83	70	0.54
D12	24/11/2016	GHD	33	22.7	0.67
P12	5/12/2017	GHD	10.1	6.5	0.19
	24/11/2016	GHD	3.52	1.52	0.08
P14	13/07/2017	Golder	1.7	0.84	0.034
	5/12/2017	GHD	1.84	0.91	0.05
	24/11/2016	GHD	11.3	6.44	0.16
P15	13/07/2017	Golder	3.64	0.84	0.066
	6/12/2017	GHD	5.5	2.1	0.11
D1 C	24/11/2016	GHD	5.22	3.72	0.06
P16	4/12/2017	GHD	3.7	2.6	0.04
P17	24/11/2016	GHD	<0.01	<0.01	<0.01
	31/08/2018	Golder	0.03*	<0.02	<0.01
	24/11/2016	GHD	5.24	3.51	0.05
D10	13/07/2017	Golder	1.38	0.84	0.022
P18	4/12/2017	GHD	1.48	1.1	0.03
	31/08/2018	Golder	0.91	0.52	<0.01
	5/12/2017	GHD	< 0.01	<0.01	<0.01
P19	31/08/2018	Golder	0.041*	0.031	<0.01
	24/11/2019	GHD	<0.05	<0.05	<0.05
020	25/11/2016	GHD	<0.05	<0.05	<0.05
P20	5/12/2017	GHD	< 0.01	<0.01	<0.01
D21	25/11/2019	GHD	< 0.05	<0.05	<0.05
P21	5/12/2017	GHD	< 0.01	<0.01	<0.01
P22	6/12/2017	GHD	< 0.01	<0.01	<0.01
P23	6/12/2017	GHD	< 0.01	<0.01	<0.01
P24	5/12/2017	GHD	1.43	0.65	0.04
P25	5/12/2017	GHD	2.9	1.5	0.07
P26	5/12/2017	GHD	6.5	1.9	0.1
P27	5/12/2017	GHD	< 0.01	<0.01	<0.01
P28	5/12/2017	GHD	<0.01	<0.01	<0.01
P29	6/12/2017	GHD	<0.01	<0.01	<0.01
P30	6/12/2017	GHD	<0.01	<0.01	<0.01
P31	6/12/2017	GHD	0.27	0.05	<0.01
P32	5/12/2017	GHD	0.39	0.05	<0.01
	-,,, -,	10110		2. 52	2.2=

Analytical Results Tables Table 9 - Historical Groundwater Results

			PFOS/PFHxS (µg/L)	PFOS (μg/L)	PFOA (µg/L)
	NEMP Drinking V	Vater	0.07		0.56
Criteria	NEMP Recreational		0.7		5.6
	Interim Freshwa	ter 95%		0.13	220
Well I.D.	Date	Firm			
220	3/05/2018	EP	0.84	0.57	0.023
F35	31/08/2018	Golder	0.57	0.29	<0.01
	6/12/2018	GHD	0.15	0.03	0.0023
P34	14/03/2019	GHD	0.165	0.025	0.0012
	13/05/2019	GHD	0.18	0.04	0.04
	6/12/2018	GHD	0.064	0.037	0.0063
P35	14/03/2019	GHD	0.061	0.037	< 0.01
	13/05/2019	GHD	0.07	0.04	0.04
	6/12/2018	GHD	0.14	0.055	0.024
P36	14/03/2019	GHD	0.134	0.05	0.019
	13/05/2019	GHD	0.17	0.07	0.07
527	6/12/2018	GHD	0.08	0.043	0.0028
P37	13/05/2019	GHD	0.08	0.04	0.04
P38	6/12/2018	GHD	0.032	0.013	0.0041
P39	6/12/2018	GHD	0.0129	0.0035	0.0098
	7/02/2019	GHD	0.057	0.02	0.03
P40	14/03/2019	GHD	0.07	0.032	0.028
	13/05/2019	GHD	0.06	0.03	0.03
	7/02/2019	GHD	0.106	0.032	0.0048
P41	14/03/2019	GHD	0.103	0.021	0.004
	13/05/2019	GHD	0.17	0.05	0.05
	7/02/2019	GHD	0.118	0.043	0.0055
P42	14/03/2019	GHD	0.112	0.035	0.0074
	13/05/2019	GHD	0.16	0.07	0.07
	7/02/2019	GHD	0.29	0.24	0.0031
P43	14/03/2019	GHD	0.052	0.029	0.0013
	13/05/2019	GHD	0.07	0.04	0.04
	7/02/2019	GHD	1.372	0.072	0.051
544	14/03/2019	GHD	1.658	0.058	0.05
P44	24/04/2019	EP	0.057		< 0.001
	13/05/2019	GHD	1.87	0.13	0.13

* = One or more results reported below LOR. Results below LOR were given the value of the LOR.

11. Figures

- Figure 1 Investigation Area
- Figure 2 Groundwater Monitoring Well Locations
- Figure 3 Water Survey Area Locations
- Figure 4 PFOA and PFHxS/PFOS Exceedances
- Figure 5 Groundwater Contour Plan
- Figure 6 Golder 2016 Site Layout and Features of Interest

Roads

Railways

Watercourses

Adelaide Airport Limited				
Offsite Groundwater Bore Use Survey and				
Additional Groundwater Investigation				

Investigation Area

Job Number | 33-19051 Revision А Date 28 Mar 2019

Figure 1

Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

N:\AU\Sydney\GIS\Admin\Temp{KatrinaVelasco\Projects\3319051\GIS\Maps\Deliverables\33_19051_Z010_InvestigationArea.mxd Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia **T** 6 © 2019. Whilst every care has been taken to prepare this map, GHD (and GOOGLE EARTH PRO) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial Imagery - Esri Imagery Basemap (Extracted 12 November 2018). Adelaide Airport Limited, Lot boundaries and Showroom and Convenience Supermarket Building locations, 2016. Created by:dbbanatin

- Phase 1 Groundwater Monitoring Wells ----- Roads 0
- 0 Phase 2 Groundwater Monitoring Wells - Railways
- $\mathbf{\Phi}$ Existing Groundwater Wells

Adelaide Airport Limited	
Offsite Groundwater Bore Use Survey and	
Additional Groundwater Investigation	

Job Number | 33-19051 Revision А Date 29 Mar 2019

Groundwater Monitoring Well Locations

N:\AU\Adelaide\Projects\33\19051\GIS\Maps\Deliverables\33_19051_Z005_GroundwaterMonitor

Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

© 2019. Whilst every care has been taken to prepare this map, GHD (and GOOGLE EARTH PRO) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incom Data source: Aerial Imagery - Esri Imagery Basemap (Extracted 12 November 2018). Adelaide Airport Limited, Lot boundaries and Showroom and Convenience Supermarket Building locations, 2016. Created by:dbbanatin particular purpose and cannot accept liability and responsibility of any kind inaccurate, incomplete or unsuitable in any way and for any reason.

Adelaide Airport Limited
Offsite Groundwater Bore Use Survey and
Additional Groundwater Investigation

Water Survey Area Locations

Job Number | 33-19051 Revision А Date 28 Mar 2019

Figure 3

N:\AU\Sydney\GIS\Admin\Temp\KatrinaVelasco\Projects\3319051\GIS\Maps\Deliverables\33_19051_Z001_WaterSurveyAreaLocations.mxc

Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

© 2019. Whilst every care has been taken to prepare this map, GHD (and GOOGLE EARTH PRO) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial Imagery - Esri Imagery Basemap (Extracted 12 November 2018). Adelaide Airport Limited, Lot boundaries and Showroom and Convenience Supermarket Building locations, 2016. Created by dbbanatin

N:AU\Sydney\GIS\Admin\Temp\Katrina\elasco\Projects\3319051\GIS\Maps\Deliverables\33_19051_Z011_PARAFIELD_PFOAandSumOfPFHxS&PFOS_Exceedances_Pre2019.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

© 2019. Whilst every care has been taken to prepare this map, GHD (and DATA CUSTODIAN) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason.

Data source: Aerial Imagery - Esri Imagery Basemap (Extracted 12 November 2018). Adelaide Airport Limited, Lot boundaries and Showroom and Convenience Supermarket Building locations, 2016. Created by:dbbanatin

- Phase 1 Groundwater Monitoring Wells —— Roads
- Phase 2 Groundwater Monitoring Wells →→→ Railways
- Existing Groundwater Wells
- --- Groundwater Contours (mAHD)

Adelaide Airport Limited
Offsite Groundwater Bore Use Survey and
Additional Groundwater Investigation

Groundwater Contour Plan

Date 28 Mar 2019

А

Job Number | 33-19051

Revision

N:\AU\Sydney\GIS\Admin\Temp\KatrinaVelasco\Projects\3319051\GIS\Maps\Deliverables\33_19051_Z008_GWContours_March19GME.mxd

Level 15, 133 Castlereagh Street Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

© 2019. Whilst every care has been taken to prepare this map, GHD (and GOOGLE EARTH PRO) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Aerial Imagery - Esri Imagery Basemap (Extracted 12 November 2018). Adelaide Airport Limited, Lot boundaries and Showroom and Convenience Supermarket Building locations, 2016. Created by dbbanatin

a starter	A REAL AND A COMPANY AND A PARTY.
ID No.	Current Off-Site Features of Interest
1	Antrum Upholstery
2	Coolchem (Automotive Fluids Distribution)
3	GM Hosking & EC Stainless Steel Welding/Aluminium Supplier
4	Superior Stainless (Stel Fabrication)
5	Griffin Press (Book Manufacturer)
6	CAS Supreme Canvas & Vinyl Products
7	Powder Coating/Crash Repair
8	Stevenson AC (Air Conditioning Servicing)
9	Adelaide All Clean Carpet Cleaning
10	Tri Metal Engineering
11	Blacksilver Painters
12	NOV Tuboscope
13	Carpet Selection Centre

LEUDER SMITH ROAD

Contraction of the second

0

ID No.	Current On-Site Features of Interest
1	Aeroservices Pty Ltd
2	Flight Training Adelaide
3	Stark Aviation
4	North Former Fire Fighting Training Ground
5	West Former Fire Fighting Training Ground
6	South-East Former Fire Fighting Training Ground
7	Former Fire Station
8	Former Landfill Bunker
9	Former Landfill

LEGEND

•	Current On-Site Features of Interest (Approximate Location)
•	Current Off-Site Features of Interest (Approximate Location)
	Approximate Fire Station / Fire Services Location
Pote	ential PFC Risk
	High Risk
	Moderate Risk
	Low Risk
	Very Low Risk

COPYRIGHT

Aerial image sourced from Nearmap Pty. Ltd, aerial dated 27.12.2015, sourced 11.02.2016.
 Roads data sourced from DPTI, Department for Transport Energy and Infrastructure, South Australian Government, sourced http://www.dptiapps.com.au/dataportal/Roads.zip, sourced 19.06.2014.
 Suburb and road data sourced from MapInfa StreatBra

3. Suburb and road data sourced from MapInfo StreetPro.

D	200	400	600	800	1,000
					METRES

REFERENCE SCALE: 1:15,000 (at A3) PROJECTION: GDA 1994 MGA Zone 54

CLIENT ADELAIDE AIRPORT LIMITED

тіті і

PROJECT SITE HISTORY AND QUALITATIVE RISK ASSESSMENT OF PERFLUORINATED CHEMICAL SOURCES - PARAFIELD AIRPORT

SITE LAYOUT AND FEATURES OF INTEREST

CONSULTANT		YYYY-MM-DD	2016-05-26	·
		PREPARED	KB	
	Golder	DESIGN	-	
	ssociates	REVIEW	MP	
		APPROVED	JC	
PROJECT No. 1546945	CONTROL 002-R	Rev. 1		FIGURE 2

Appendices

Appendix A - Groundwater Survey Data

PARAFIELD AIRPORT Tigermoth Lane, Parafield Ground Water Observation Wells

SURVEYS

Job No 246916

Well Id	Easting	Northing	тос	Description
P11	283242.89	6146375.31	10.14	Observation Well
GWP6_PFC	282802.40	6146667.91	8.95	Observation Well
Р9	282009.20	6146584.13	6.46	Observation Well
P10	282642.92	6146231.68	7.58	Observation Well
BGW3	283468.20	6145791.79	10.21	Observation Well
P8	282384.63	6146458.67	8.41	Observation Well
P6	282489.79	6146491.77	8.52	Observation Well
GWP5	284242.14	6147844.59	18.84	Observation Well
BGW4	283809.30	6148148.96	17.44	Observation Well

SKS

Notes

Coordinates are based on MGA 94 Zone 54 GNSS SURVEY Elevations are based on AHD TOC refers to top of PVC Date of survey 15/08/2016 Surveyor: Jonathan Morton

PARAFIELD AIRPORT Tigermoth Lane, Parafield Ground Water Observation Wells 2

SURVEYS

Job No 246916

			V	
Well Id	Easting	Northing	тос	Description
P15	283228.510	6146384.790	9.773	Flush Well
P21	282963.077	6145945.269	8.805	Flush Well
P20	282542.625	6146002.116	6.768	Flush Well
P19	282291.903	6146078.955	6.322	Flush Well
P13	282752.542	6146612.618	8.799	Flush Well
P14	282787.834	6146598.440	9.026	Flush Well
P12	282746.296	6146707.166	9.001	Flush Well
P7	282381.650	6146487.693	8.384	Monument Well
	282381.359	6146487.539	7.466	Ground level at P7
P3	282425.701	6146489.236	7.917	Monument Well
	282425.661	6146489.084	7.674	Ground level at P3
P18	282378.231	6146314.112	7.271	Flush Well
P1	282448.107	6146429.085	7.938	Monument Well
	282448.173	6146429.212	7.693	Ground level at P1
P2	282462.646	6146453.860	8.256	Monument Well
	282462.704	6146454.056	7.886	Ground level at P2
P4	282475.281	6146473.418	8.357	Monument Well
	282475.007	6146473.331	7.890	Ground level at P4
P17	282168.469	6146444.067	6.924	Flush Well
P16	282592.056	6146627.919	8.357	Flush Well
				-

SKS

Notes Coordinates are based on MGA 94 Zone 54 GNSS SURVEY Elevations are based on AHD TOC refers to top of PVC Date of survey 22/11/2016 Surveyor: Sam Barrera

PARAFIELD AIRPORT OBSERVATION WELLS

SURVEY DATE 06/12/2018 SURVEYOR - JON MORTON METHOD - GPS COORDS - MGA / AHD DATUM - PSM 6628/38566

WELL ID	EAST	NORTH	RL
P39	282244.5	6146188	6.695
P38	282139.6	6146311	7.521
P37	281933.5	6146865	6.772
P36	282088.9	6147033	7.625
P35	282437.6	6147258	10.081
P34	282162.7	6146861	8.383

To: Joel Kirk

Company: GHD Phone: 8111 6586

From:	Lincoln Jeffery
Phone:	0414 840 569
Fax:	8351 4247
Email:	Lincoln@linkupconstructionsurveys.com.au

Date: 8/2/2019

Monitoring well coordinates – Parafield Airport

Well or Bore	Easting	Northing	R.L. Top of Casing	Natural Surface	
No.	MGA94	MGA94	A.H.D.	A.H.D.	
P40	281667.639	6146800.292	5.754	5.871	
P41	281695.915	6146991.474	6.274	6.396	
P42	281866.499	6147234.411	7.442	7.539	
P43	282123.957	6147364.447	8.957	9.104	
P44	282870.572	6147852.135	12.735	12.847	

All Survey information was based from the MGA94 grid system and Australian Height Datum(AHD), Triangulated from Network Survey Marks on the area.

Appendix B – Field Notes

CHID	Phase 1										
GHD	Groundwater Samples										
Client: Adelaide Airport Limited											
Project: Parafiel Airport GW Investigation and Survey											
Job No.: 3319051											
Location: Parafield Gardens											
WL Meter Typ	be: Int.Fce										
Location ID	Sample Date	Standing Water Level (SWL) (mbgl)	Depth of Well (mbgl)	рН	EC (us/cm)	TDS (mg/L)	DO (mg/L)	Redox (mV)	SHE Redox (mV)	Temperature (°C)	Sample Description
P9	6/12/2018	1.771	5.962	7.63	2873	1867.45	0.4	121.8	320.8	19.1	No odour/sheen, pale brown/straw, high turbidity, trace organic matter
P34	6/12/2018	3.361	5.871	7.41	4175	2713.75	2.24	85.9	284.9	19.6	No odour/sheen, pale-mid brown/orange, fine-medium sand in bottom of hydrasleeve, high turbidity
P35	6/12/2018	3.046	7.108	7.2	2816	1830.4	2.43	84.6	283.6	19.7	No odour/sheen, pale brown, course sand in bottom of hydrasleeve, high turbidity, trace organic matter
P36	6/12/2018	2.721	5.291	7.15	4401	2860.65	1.8	102	301	21.7	No odour/sheen, pale brown/orange, fine sand in bottom of hydrasleeve, moderate turbidity
P37	6/12/2018	2.491	5.991	7.19	4925	3201.25	2.21	122.4	321.4	21.4	No odour/sheen, pale brown/orange, fine sand in bottom of hydrasleeve, moderate turbidity, trace organic matter
P38	6/12/2018	2.284	5.317	7.99	6904	4487.6	1.54	77.9	276.9	20.2	No odour/sheen, pale brown/orange, fine sand in bottom of hydrasleeve, high turbidity
P39	6/12/2018	1.284	5.968	7.83	20081	13052.65	3.98	96.3	295.3	20.2	No odour/sheen, pale brown/orange, course sand in bottom of hydrasleeve, high turbidity

Client: Project: Proj. No.: Site: Puro Sampler:	Job Information Sampling Information Aydrasleer Client: Adelaid Airport Ltd Sample Method: Submersible pump Project: Parafield Airport WQ Meter Type: YSI Pro roj. No.: 3319951 Flow Cell: Y Pump Depth: ite: Parafield Arrport P9 WLevel Meter Type: IP Sampler: Vera. Biermann						usleeve ump m	We SWL: 1.817 mbToc Bore Information Date: m Logic Check: m Ref.datum: m Stick Up: m Bore Depth: m GmbgL m Bore Depth: m Market				
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load	d, sheen, odour, flow rate, purged dry?		
Stable consecutive	when (3 e readings):		+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable	C. P. M.				
11-06		19.1	9.0 00	2607	7:42	209.0			brown-real sedment,	furbid vieter 40 sheen or		
1.10		19.1	7.7% 5.71	2914/2540 SPC C	7.42	203-2			some brown-red sediment	t, slight turbidity no sheen or o		
Field QA Checks: Well Volume Calculations Any violent reactions? Y N Casing Diameter (mm) 25 Conversion Factor (L/m) 0.9 Total Well Depth (-) Water Level m (-) Water Level						/ Volume Calculatio ameter (mm) on Factor (L/m) h (-) Water Lo _ m (-)	ns 25 0.98 evel m	50 10 1.96 7. (=) Water Colu (=) Water	0 125 15-0 200 35 31.4 49.1 70.7 mnm Column (x) Conversion Facto	250 300 125.7 196.3 r (=) Litres per 1 Well Volume		
as samplin DC update	ng equipmer d? (V) N F	ield Filterec	ed?(¥/ N I? Y /Ň						m (x)	_ m (=) m = 3 well vols		
omment Labs Scen	Duplicate	samples col boHles flefed	lected, bottles u : Pq , C	sed, access, co	ndition of head	works etc				Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack		
Was samplin COC update Comment $\mathcal{L}_{\alpha}S$ s	n viais? Y (ation as per d? ()/N F Duplicates upplied plas Co	nt pre-clean ield Filterect samples col bott les	ent reactions? Y dure? Y N ed? V N I? Y / N lected, bottles u ; P9, C	Ised, access, co RAØ	Casing Di Conversion Total Well Dept	ameter (mm) on Factor (L/m) h (-) Water Lu _ m (-) works etc	25 0.98 evel m	50 10 1.96 7. (=) Water Colu (=) Water	0 125 15-0 200 35 31.4 49.1 70.7 mn m	250 300 125.7 196.3 r (=) Litres per 1 Well Volume _ m (=) m = 3 well Purge Volumes Casing Int. Dia (mm) 50 100 15 Vol (L/m of casing) 2.0 7.9 17. *Double for gravel pack		

Job Information Sample Method: Sample Method: Subjective prime Project: Client: Subjective prime SWL: Image: Subjective prime Project: Ster. Subjective prime SWL: Image: Subjective prime Project: Ster. Project: Ster. Ster. Ster. Time: Image: Ster. Sample: Karper form: Mape Meter Type: P Project: Ster. Ster. Ster. Time: Image: Ster. Meter Ster. m Sample: Conversion Mape Meter Type: P Ster. Ster. Meter Ster. m Ster. m Ster. m Meter Ster. m Ster. m Ster. m Meter Ster. m Ster. m Meter Ster. m Meter Ster. m Meter Ster. m Ster. Meter Ster. m Meter Ster. m Ster. Meter Ster. m Meter Ster. Meter Ster. Meter Ster.	Purging and	Sampling Record		Bore	ID:729 ·			
Time Volume Temp Dis.Oxygen Elec.Cond pH Ox.Red PI: SWL Comment: Comment: Stable when (3)	Client: Adelaide Airport Project: Linited Proj. No.: 33/905/ Site: Airport (Londside) Sampler:	Sampling Information Sample Method: Submersi WQ Meter Type: YSI Pro Flow Cell: Y Pump Der WLevel Meter Type: IP NAPL Check:, A.	HIS ible pump pth:m Ref Bore	SWL:				
conservice readings: +/10% +/3% +/005 pH +/10 mV stable 113/ - 19/1 3/40% 120% 7-63 121% - Pale brown / Strony . 0.1/10/11 2/5% - - Pale brown / Strony . 0.1/10/11 2/5% - - - Pale brown / Strony . 0.1/10/11 2/5% - - - Pale brown / Strony . 0.1/10/11 2/5% - - - - Pale brown / Strony . - - - - - - - - . <	Time Volume Temp Dis.Oxygen () (L) (°C) ()	Elec.CondpHOx-Red()(pH units)(± mV)	Pt. SWL) (m) (Comment:) Colour, turbidity, sediment load, sheen, o	dour, flow rate, purged dry?			
Field QA Checks: Well Volume Calculations Air bubbles in vials? Y /N Any violent reactions? Y /N Casing Diameter (mm) 25 50 100 125 15.0 200 25.0 30.0 Decontamination as per GHD procedure? Y N Conversion Factor (L/m) 0.98 1.96 7.85 31.4 49.1 70.7 125.7 196.3 Water Column m (-) Water Level (=) Water Column m Water Column m (x) Conversion Factor (=) Litres per 1 Well Volume	$\begin{array}{c} \text{Statute interval} (3) = +/-10\% \\ \hline 11.5/$	+/- 3% +/- 0.05 pH +/- 10 m 2-873 \$1c 7-63 121.8 2-5314 c	stable	- Pale brown/ trace organic No sectioner High turbidi ANO shaen/or	Strony. matter: ty tour			
COC updated? N Field Filtered? Y(N) = 3 well vols Comment: Duplicate samples collected, bottles used, access, condition of headworks etc Purge Volumes 100 150 Zx PFAS bottle (MGT) 7.9 17.7 Double for gravel pack *Double for gravel pack	Field QA Checks: Air bubbles in vials? Y /N) Any violent reactions? Decontamination as per GHD procedure? Was sampling equipment pre-cleaned? Was sampling equipment pre-cleaned? Coc updated? N Coc updated? Comment: Duplicate samples collected, bottles D FFA 5 Comment: Duplicate samples collected, bottles	Well Volume Calc Y IN Casing Diameter (m Conversion Factor (I Total Well Depth Total Well Depth m m wsed, access, condition of headworks etc Ottle MGT)	culations nm) 25 50 L/m) 0.98 1.96 fater Level (=) Wat (=)	100 125 150 200 250 7.85 31.4 49.1 70.7 125.7 /ater Column m m m (x) m (=) m (x) m (=)m m (=)m m (=) m (=)	300 196.3 tres per 1 Well Volume rr = 3 well vols Purge Volumes Int. Dia (mm) 100 n of casing) 2 Double for gravel pack			

	nnacement Iciniseanco Ivirciament	Purg	ing and	Samplir	ng Recor		Bore ID:7 <u>34</u>		
	Job Int	ormation	Air t		Sampling I	Information F	-13.		2 2 L) Bore Information
Client:	Linite		mpon	Sample Met	hod:	Submersible p	bump	SM	/L:
Project:)		WQ Meter T	уре:	YSI Pro 🗸		Da	te:
Proj. No.:	3319	051		Flow Cell:	Y	Pump Depth:.	m	Ref.datu	m: Stick Up: m
Site: Airi	pout (Indi	side	WLeve	Meter Type:	IP /		Bore Dep	th: m Bore Diam.:
Sampler:			<u>in c.e.</u>	NAPL Chec	k:A	<u></u>		Scre	en From:
Time	Volume	Temp	Dis.Oxygen	Elec.Cond	pH (nH unite)	Ox-Red Pt.	SWL	[, , ,	Comment:
Stable	(L.) when (3		()	()	(pH units)	(± mv)	(m)	()	Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?
consecutive	e readings);	-	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable		
H.25		19.0	20-66	41/5512	7-41	89-9			Pale - medicing brown /
1			2.24mg/V	3766 C					orange
									Sed ment - fine modium
									Sand in hotton OP
									12/5
· · ·									
									High TURBOUTY
									No oder Sheen.
									*
		Field OA C	hecks:	()	Well	Volume Calculatio	ons		
Air bubbles Decontamin	in vials? Y // ation as per	N/Any viol GHD proce	lent reactions? \ dure? Y)/ N		Casing Di	ameter (mm)	25	50 1	00 125 150 200 250 300
i i	•		U			on Factor (L/m)	0.98	1.96 7	.85 31.4 49.1 70.7 125.7 196.3
						п (-) water L п (-)	evei m	=) water Col (=)	umn m m
Was sampli	na equinmen	t pre-clean	ed?Y/N					Water	Column (x) Conversion Factor (=) Litres per 1 Well Volume
COC update	COC updated? (V/ N Field Filtered? Y /N)								III (x) III (=) III (=)III (=) _III (=) _IIII (=) _III (=) _III (=) _IIII (=) _III (=) _II
Comment	Comment: Duplicate samples collected, bottles used, access, condition of headworks etc								Purge Volumes
Q.F	QAOZ.								Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack
2	2 × PFAS bottles (MGT).								

GHD	ANAGEMENT IGINEERING IVIRONMENT	Purg	ing and	Samplir	ng Recor		Bore ID:					
Client: Project: Proj. No.: Site: Acc Sampler:	Job Information ient: Adelaige Airport sigect: - No.: 3319051 Airport (Airside) pler: Jeed. Chance NAPL Check:A.							SWL: 3.046 m Logic Check: Image: Check: Date: 6-12-18 Time: 10.50 Ref.datum: Stick Up: m Bore Depth: 7.10.8 m Bore Diam.: mm Screen From: 3. to 7 m Well Cap Secure? 12.5				
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?			
Stable consecutive	when (3 e readings):	-	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable					
10.50	-	19.7	25.9	2816	7.2	84.6	1	-	Parle brazza i			
		12.2	2.43	2543								
			nglL	C				0	Sectionent - fine / medium			
								1	Course grain Sanch			
									C botton of HIS.			
									trace organic matter.			
									1 /~/			
									No corow I Sheen			
								-	Fligh Furthiclety.			
		Fjeld QA Cl	hecks:	1	Well	Volume Calculatio	ns					
Air bubbles Decontamin	in vials? Y / ation as per	N Any viol	ent reactions?	Y /N	Casing Di	iameter (mm)	25	50 10	0 125 150 200 250 300			
		•	0		Conversion	on Factor (L/m)	0.98	1.96 7.8	35 31.4 49.1 70.7 125.7 196.3			
						m (-)	m	(=)	m m			
Was samplin	ng equipmen	nt pre-cleane	ed? W/N					water C	m (x) m (=) n			
Comment			leated bettles		andition of book			= 3 well vois				
OF.	101	samples col	lected, bottles (used, access, co	ondition of heads		Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack					
2×	< T	PFA	5 b	ottle	5 (M	GT.)						

GHD I A	inagement Igineering Vironment	Purg	ing and	Samplin	ıg Recor		Bore ID:36				
Client: Project: Proj. No.: Site: 3-	Job Information Client: Adebice Aurportinited Sample Method: Submersible pump Project: - Proj. No.: 3319051 Site: Barnes Cres WLevel Meter Type: IP							SWL: 2.7.2 m Logic Check: 7.2 Date: 6.7.2 1.8 Time: (12.3) Ref.datum: Stick Up: m Bore Depth: 5.72 m			
Sampler:	Volume	Tomp	Die Ovwere	NAPL Check	k:, <i>A.Y.[.1:</i>],	Our Deal Di	- <u>O</u> WI	Screen	n From:		
()	(L)	(°C)	()	()	рн (pH units)	(± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?		
Stable v consecutive	vhen (3 • readings):	-	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable				
12.30	<u> </u>	21.7	21.8%	4401Sp	7.15	102·C			Pale brown lerange.		
			1.8 mgl	41300	-						
									Med turbidity -		
						~~			sechneit - fire sout		
									in botton of FIS		
									the adapt Shaard		
							-		NOC COON SHEET !		
									1×1-15.		
Air bubbles i Decontamina	Field QA Checks: Air bubbles in vials? Y /N Any violent reactions? Y /N Well Volume Calculations Decontamination as per GHD procedure? V/N Casing Diameter (mm) 25 Conversion Factor (L/m) 0.98 Total Well Depth (-) Water Level							50 100 1.96 7.85 =) Water Colum (=)	125 15.0 200 250 300 5 31.4 49.1 70.7 125.7 196.3 m m m		
Was samplin COC updated	ig equipmen 1277/N Fi	t pre-cleane eld Filtered	ed 2 (Y) N ? Y //N						Summ (x) Conversion Factor (=) Litres per 1 Well Volume m (x) m (=) m m (x) m (=) m m (x) m (=) m		
Comment: Duplicate samples collected, bottles used, access, condition of headworks etc $1 \times PFAS hott (e (MGT) \cdot$									Purge Volumes Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack		
				·	-	-					

ANAGEMENT ENGINEERING ENVIRONMENT Purging and Sampling Record										Bore ID:37						
Job Information Client: Adelaicle Airport Project: Sample Me WQ Meter Flow Cell Site: Mackay Cres Sampler: Seef. Charge NAPL Chec					Sampling Information HS hod: Submersible pump ype: YSI Pro Y Pump Depth:m I Meter Type: IP k:A.				Bore Information SWL: 2.491 Date: 12.491 Date: 12.12.15 Time: 12.15 Time: 12.15 Ref.datum: 5.991 Bore Depth: 5.991 Screen From: 2.10.6. m Well Cap Secure? 965							
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	6)	Comment: Colour turbidity sediment load sheep odour flow rate nurged dry?						
Stable v	vhen (3 readings):	-	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable	()	bolour, tarbiarty, seament load, sheen, odour, now rate, purged dry:						
2.15	rouungoj.	21.42	26-3%	4a23916	7.19	[22-LF				Pale ba a large						
			2-21 Mg/L	4619 c						pices proge						
										trace organic matter.						
		1														
										Securent - fine 50 d						
		-								in botton of MS-						
								-		110						
										100 Goler / Sheer,						
										Medun tubiclity						
		1	1.61													
							1			IX HS.						
r bubbles i	n vials? Y	Any viol	necks: ent reactions? \	YIN	Well	Volume Calculatio	ons	50	1.00							
econtamina	tion as per G	HD proced	lure?Y)N	0	Casing Di	ameter (mm)	25	50	7.01	125 150 200 250 300 5 21.4 40.1 70.7 125.7 105.7						
			0	0	Total Well Depti	n (-) Water L	evel	(=) Wate	er Colum	5 51.4 45.1 70.7 125.7 196.5						
			1.1			_ m (-)	m	(=)		m						
as samplin OC updated	g equipment	pre-cleane	ed7 Y/N						Water Co	olumn (x) Conversion Factor (=) Litres per 1 Well Volume m (x) m (=) m						
omment:	Duplicate sa	amples coll	lected, bottles u	ised, access, co	ondition of heady	vorks etc		-		Purae Volumes						
1	X	TFA	45 k	sottle	(MG	T).				Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack						

	Ich In	Targ	ing and	Jampin	ig necol	Bore ID:							
Client: Project:	-delaic	te Awy	out linite	Sample Met WQ Meter T	Sampling Information HS imple Method: Submersible pump Q Meter Type: YSI Pro			S	SWL: 2284 Bore Information SWL: 6-12-18 Time: 09.45				
Proj. No.: 3319051 Site: Binini Cres (11) Sampler: Scel Chance: NAPL Chec					Y el Meter Type: <u>k: م) م</u>	Pump Depth::	m	Ref.date Bore Dep Scr	tum:				
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	(Comment:) Colour, turbidity, sediment load, sheen, odour, flow r	ate, purged dry?			
Stable v	vhen (3 e readings):		+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable			-			
9.45	~	20.2	18%.	6904	7.99	77.9	-	-	Pale brown lorange				
			nglL	6219(5)					High turbiclity.				
									Sedwent - fine	Send			
	-								in botton of HS				
		-							No odow Shee				
									IX HS.				
										-			
bubbles i	n vials? V /	Field QA Ch	ecks:	(6)	Well	Volume Calculatio	ons			_			
contamina	ition as per	GHD proced	lure?Y/N		Conversio	ameter (mm) on Factor (L/m)	0.98	50 100 125 150 200 250 300 1.96 7.85 31.4 49.1 70.7 125.7 196.3					
as samplin)C updated	g equipmen 1?(Y)/N Fi	t pre-cleane ield Filtered	d?()N ?Y(N)			_ m (-)	evel m	(=) Water Co (=) Wate	olumn m m ter Column (x) Conversion Factor (=) Litres per 1 W m (x) m (=)	ell Volume n = 3 well vo			
\sim mment:	Duplicate s	samples coll FAS	ected, bottles u	ised, access, co	MGT	vorks etc			Purge Vo Casing Int. Dia (mm Vol (L/m of casing) *Double for c	blumes: b) 50 100 150 2.0 7.9 17.7			

	ient ing Pur	ging and	Samplir	ig Recor	Bore ID:						
Client: Ad Project: - Proj. No.: 3 Site: 131000 Sampler:	Job Informatio Jelande 31905 Cres	Airpotlint 1 (46). <u>hence</u>	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	Sampling I hod: ype: Y I Meter Type:	Nformation Submersible F YSI Pro Pump Depth:.	-15 · 5ump	SWL: 284 Bore Information Date: 6. 1.2 7.1 Date: 6. 1.2 7.1 Time: 0.91 30 Ref.datum: Stick Up: m Bore Depth: 5 6. Screen From: /.55. to. 6. M Bore Diam.: m Bore Diam.:				
Time Vo ()	lume Tem (L) (°C)	p Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?			
Stable when consecutive read	(3 fings):	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable		<u>, , , , , , , , , , , , , , , , , , , </u>			
69.30	26	248.71.	20081 18298(C)	7.83	96.3	•		Pale brown / crange			
		ngit						High turbiclity.			
······								Sectiment - fine I medium			
								botton of 1-15.			
								No odow / Sheen -			
								1 × HS.			
Air bubbles in via Decontamination Was sampling equ COC updated? Y/	I Field QA Is? Y / N Any v as per GHD pro uipment pre-cle / N Field Filte	I Violent reactions? Y Cedure?/Y/ N aned? Y / N red? Y /N		Well Casing Dia Conversio Total Well Depth	Volume Calculatio ameter (mm) on Factor (L/m) n (-) Water L _ m (-)	ns 25 0.98 evel (m	S0 100 125 150 200 250 300 1.96 7.85 31.4 49.1 70.7 125.7 196.3 (=) Water Column m m (x) Conversion Factor (=) Litres per 1 Well Volume				
$\frac{Comment:Dup}{\mathcal{I}\mathcal{X}}$	licate samples PF7	$\frac{1}{45}$	ised, access, co i HLO	indition of headw MG^{-}	vorks etc			<i>Purge Volumes</i> Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack			
				-		м.					

GHD

Phase 2 Groundwater Samples

Client: Adelaide Airport Limited

Project: Parafiel Airport GW Investigation and Survey

Job No.: 3319051

Location: Parafield Gardens

WL Meter Type: Int.Fce

Location ID	Sample Date	Standing Water Level (SWL) (mbgl)	Depth of Well (mbgl)	рН	EC (us/cm)	TDS (mg/L)	DO (mg/L)	Redox (mV)	SHE Redox (mV)	Temperature (°C)	Sample Description
GWP3_PFC	7/02/2019	3.748	5.241	7.16	3713	2413.45	2.54	86.9	285.9	20.3	No sample
P9	7/02/2019	2.391	5.914	7.33	3498	2273.7	0.03	95.5	294.5	20.3	No sample
P17	7/02/2019	2.432	4.333	7.28	5237	3404.05	0	64.1	263.1	21	No sample
P33	7/02/2019	3.163	5.451	7.45	1534	997.1	0.01	86.3	285.3	19.1	No sample
P34	7/02/2019	3.926	5.709	7.1	3851	2503.15	1.47	87.5	286.5	20.3	No sample
P35	7/02/2019	3.554	7.101	7.31	2852	1853.8	0.31	26	225	20.6	No sample
P36	7/02/2019	3.193	6.281	7.27	4464	2901.6	0.19	78.1	277.1	21.8	No sample
P37	7/02/2019	2.959	6.971	7.21	4773	3102.45	0.49	115.3	314.3	22.5	No sample
P38	7/02/2019	2.814	5.267	7.87	6771	4401.15	0.33	74.9	273.9	22.2	No sample
P39	7/02/2019	1.679	5.979	6.27	12490	8118.5	6.43	96.9	295.9	25.5	No sample
P40	7/02/2019	2.986	5.908	7.59	4398	2858.7	1.57	97.6	296.6	21.3	No odour/sheen, pale brown, fine sand in bottom of hydrasleeve, low-moderate turbidity
P41	7/02/2019	3.317	5.843	7.36	3754	2440.1	0	106.4	305.4	21.5	No odour/sheen, pale brown clay, fine sand in bottom of hydrasleeve, low-moderate turbidity
P42	7/02/2019	3.476	5.948	7.18	2142	1392.3	2.57	137.2	336.2	22.5	No odour/sheen, pale brown clay, fine sediment in bottom of hydrasleeve, low-moderate turbidity
P43	7/02/2019	3.931	5.604	6.86	4609	2995.85	0.53	104.4	303.4	21.4	No odour/sheen, pale brown clay, low turbidity
P44	7/02/2019	8.848	6.028	7.45	3333	2166.45	1.58	90.2	289.2	20.3	No odour/sheen, pale brown/straw, fine orange sand in bottom of hydrasleeve, low-moderate turbidity

GWP1_PFC	14/03/2019	6.046	9.423	7.9	2631	1710.15	4.51	125.4	324.4	20.8	No odour / sheen, clear / pale brown, fine sand in bottom of hydrasleeve, moderate turbidity
GWP2_PFC	14/03/2019	3.71	6.713	7.73	2110	1371.5	1.15	121.8	320.8	22.6	No odour / sheen, clear / yellow, fine sand in bottom of hydrasleeve, low turbidity
GWP3_PFC	14/03/2019	3.909	5.283	7.81	3619	2352.35	3.25	154	353	22.4	No odour / sheen, clear / pale brown, low sediment load / turbidity
P9	14/03/2019	2.567	5.926	7.94	3417	2221.05	1.06	94.6	293.6	22	No odour / sheen, clear / pale brown, low sediment load / turbidity
P34	14/03/2019	4.079	5.647	7.9			3.44	153.8	352.8	22.6	No odour / sheen, pale brown, fine sand in bottom of hydrasleeve, moderate turbidity
P35	14/03/2019	4.813	7.141	8.08	1431	930.15	2.54	174.4	373.4	21.8	No odour / sheen, clear / pale brown, fine sand in bottom of hydrasleeve, moderate turbidity
P36	14/03/2019	3.333	5.268	7.65	4173	2712.45	1.19	125.3	324.3	22.2	No odour / sheen, pale brown, fine sand in bottom of hydrasleeve, low turbidity
P40	14/03/2019	3.132	5.923	7.86	4056	2636.4	1.61	152.5	351.5	20.7	No odour / sheen, pale brown, fine sand in bottom of hydrasleeve, high turbidity
P41	14/03/2019	3.429	5.776	7.73	3287	2136.55	1.77	155	354	21.3	No odour / sheen, pale - medium brown, fine sand in bottom of hydrasleeve, low turbidity
P42	14/03/2019	3.634	5.927	8.12	1848	1201.2	3.64	155.5	354.5	22.3	No odour / sheen, pale brown, fine sand in bottom of hydrasleeve, low-moderate turbidity
P43	14/03/2019	4.079		7.55	4244	2758.6	2.03	152.6	351.6	22	Well annulus blocked. No odour / sheen, pale brown, high sediment load / turbidity
P44	14/03/2019	4.017	5.941	7.32			10.02	-107.1	91.9	21.4	No odour / sheen, clear / yellow, fine sand in bottom of hydrasleeve, low turbidity

	NAGEMENT GINEERING VIRONMENT	Purgi	ing and	Samplin	g Recor			Bore ID:	$\hat{g}_{\mu} \psi F \mathcal{J}_{-} F \mathcal{F} \mathcal{L}$						
Job Information Client: Parafield Airpor Samp Project: Proj. No.: 3319051 Site: Sampler:				Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling , hod: ype: Y Meter Type:	Information N F Submersible p YSI Pro Pump Depth:	ump m	SWL: 3.74.8 Bore Information Date: .7-218 m Logic Check: Date: .7-218 Time: 1.4.5 Ref.datum: Stick Up: m Bore Depth: .5.241 m Bore Diam.: mm Screen From: .2.5 m Well Cap Secure?							
Time () Stable v	Volume (L) vhen (3	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	рН (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment loa	ad, sheen, odour, flow	rate, pu ged dry?				
consecutive	readings):	20.3	+1-10% 29-2 d	713. (spc)	7. 16	+/-10 mV	stable		stanchpipe.						
			2-54 ng/L	:3383 (C)					NO Sample	•					
Air bubbles i Decontamina	n vials? Y / ation as per f	Field QA Cl N Any viol GHD proced	heck5: ent reactions? \ dure? Y / N	r'IN	Well Volume Calculations Casing Diameter (mm) 25 Conversion Factor (L/m) 0.98 Total Well Depth (-) Water Level (r			50 100 1.96 7.8 =) Water Colum (=)	50 100 125 150 200 250 300 1.96 7.85 31.4 49.1 70.7 125.7 196.3) Water Column						
Was samplin COC tipdated Comment:	$S = quipmen \frac{12 \text{ Y/N}}{12 \text{ Y/N}} FiDuplicate sS \sim \beta$	t pre-cleane ield Filtered iamples col	ed? Y / N ? Y / N lected, bottles u	ised, access, co	ndition of headv	vorks etc			m (x)	m (=) Purge Casing Int. Dia (n Voi (L/m of casin *Double foi	m = 3 well vols Volumes 1m) 50 100 150 g) 2.0 7.9 17.7 r gravel pack				
GHD ANA	NAGEMENT GINEERING VIRONMENT	Purgi	ing and	Samplin	g Recor	d							Bore II	D:	9
--	------------------------------------	-----------------------------------	---------------------------	---	---	---	--------------------------	--------------	---	--------------------	------------------	------------------------------------	--	--	---
Client: Project: Proj. No.: Site: Sampler:	Para Bara 3819 Scel	formation field 1051 Cha	Aigport	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling I hod: ype: Y el Meter Type: k:	nformation O (Submersible p YSI Pro Pump Depth: IP	} ump m	Ref. Bore	SWL: Date: datum: Depth: Screen	2:3 7-2 5:91	9 -)9 4	re Informat m m m \	ion Logic Cheo Tin Stick L Bore Diar Well Cap S	ck: ne: 20 Jp: n.: ecure?	j⊃ <i>∕∕∕</i> m mm
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)			Comment:	ity codim	ant load a	shoop odou	r flow rate	nurmed day2
Stable w	hen (3 readings):		+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable	()	solour, turbiu	ity, seain	ent loau, s	sneen, ouou	ir, now rate,	purged dry?
2.00	roudingo).	20:3	0.4%	3498	7.33	95.5	1						t de		
				SPC						100	Sanj	pole			
			0.03	0	_										
			mgl	3172						Gat	IC				
				C			_			0					_
-															
									-						-
						~									
						1									-
			1												
-				/											
Air bubbles i	n vials? Y /	Field QA Cl N Any viol	hecks: entreactions? Y		Well Cacing Di	Volume Calculation	ns Dag	150	100	1 4 9 5	150	1 220	05.0	1.000	1
Decontamina	tion as per	GHD proceed	lure? Y / N		Conversio	on Factor (L/m)	0.98	1.96	7.85	31.4	49.1	70.7	125.7	196.3	
	/				Total Well Dept	(-) Water Le	vel	(=) Wate	r Column			1.1		1	
Was samplin COC updated	g equipmen 1?Y/N Fi	it pre-clearie ield Filtered	ed?Y/N ?Y/N				m	(-)v	Vater Colu	(x) m (x)	Conversio	on Factor	(=) Litre m (=)	s per 1 Well	Volume m = 3 well vols
Comment: NOS	Duplicate s	samples coll	lected, bottles u	sed, access, co	ondition of headw	orks etc							Casing In Vol (L/m *Do	Purge Volui t. Dia (mm) of casing) puble for grav	nes 50 100 150 2.0 7.9 17.7 vel pack

GHD EN	NAGEMENT GINEERING VIRONMENT	Purgi	ing and	Samplin	ıg Recor	d				Bore ID:PI	7
Client: Project: Proj. No.:	Job Int Peraf 3319	ormation eld A 05	is port	Sample Met WQ Meter T Flow Cell:	<i>Sampling</i> hod: ype: Y	Information Submersible p YSI Pro Pump Depth:	ump m	SWL: Date: Ref.datum:	2.432 ^{Bore Inform} 7-2-19	nation Logic Check: Time:2\O Stick Up:	Р.~ m
Site: Sampler:	<u></u>	ــــــــــــــــــــــــــــــــــــــ	orle	WLeve NAPL Checl	el Meter Type: k:	IP		Bore Depth: Screen	<u> </u>	Bore Diam.: Well Cap Secure?	mm B
Time () Stable w	Volume (L) when (3	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load	d, sheen, odour, flow rate, pu	rged dry?
Consecutive	readings):	21	-0.71.	5231	+/-0.05 pH -7-28	-+-10mV 64.1	stable		Gatic.		
				4834					No Saple		
				(c)							
									· · · · · · · · · · · · · · · · · · ·		
Air bubbles i Decontamina	n vials? Y / I Ition as per (Field QA Cl N Any viola GHD proced	necks: ant reactions? Y lure? Y / N	1 N	Well Casing Di Conversio Total Well Depti	Volume Calculation ameter (mm) on Factor (L/m) n (-) Water Le _ m (-)	ns 25 0.98 evel (50 100 1.96 7.85 ≕) Water Column (=)	125 150 200 31.4 49.1 70.7	250 300 7 125.7 196.3	
Was samplin COC updated	g equipmen i?Y/N Fi	t pre-cleane eld Filtered	ed? Y / N ? Y / N					Water Col	umn (x) Conversion Facto	or (=) Litres per 1 Well Volu _ m (=) m	ime = 3 well vols
Comment:	Duplicate s	amples coll	ected, bottles u	sed, access, co	ndition of headw	vorks etc				Purge Volumes Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel p	100 150 7.9 17.7 Jack

	NAGEMENT GINEERING VIRONMENT	Purgi	ng and S	Samplin	g Recor	d · ``	LA		Bore ID:
Client: Project:, Proj. No.: Site: Sampler:	Paras 33 	Presentation Presentation Prost	Airpor s]	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling I hod: ype: Y I Meter Type: <:	nformation Submersible p YSI Pro Pump Depth:. IP	mp	SWL: Date: Ref.datum: Bore Depth: Screen	Bore Information
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?
	è readings):		+/- 10%	+/ 3%	+/- 0.05 pH	+/- 10 mV	stable		gatic no sample isell annolos bloched unable to determine bore depth or Field parameters -
Air bubbles Decontamin Was samplin COC update Comment	in vials? Y / I ation as per (bg equipment d? Y / N Fi 2 Duplicate s S cm	Field QA Ch Any viole GHD proced proced proced proced amples coll p	ecks: ent reactions? Y ure? Y / N d? Y / N ? Y / N ected, bottles u	sed, access, co	Well Casing Di Conversio Total Well Depth	Volume Calculatio ameter (mm) on Factor (L/m) in (-) Water Lo in (-)	ns 25 0.98 evel (50 100 1.96 7.85 =) Water Columr (=) Water Co	125 150 200 250 300 31.4 49.1 70.7 125.7 196.3 m m m m m m(x) Conversion Factor (=) Litres per 1 Well Volume m(x) m(e) m m m(x) m(e) m(e) m

	Purgi	ing and	Samplin	ig Record	d	_			Bore ID: P33
Client: Pur Project: Proj. No.: 33 Site: Sampler:	ob Information affeld 9051 vel Ch	Aiporo"	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling I hod: ype: Y Meter Type: <	nformation / / Subprefsible p YSI Pro Pump Depth:. IP	oump m	SWL: Date: Ref.datum: Bore Depth: Screen	3.163 Bore Informa m 	tion Logic Check: Time:
Time Volu () (L Stable when (3	me Temp) (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load,	sheen, odour, flow rate, purged dry?
2.30	<u> 9.</u>]	0.2%	1537 (spc)	7.45	86-3	Siable		NO Scriple	
-			(364 (C)					Stanchpipe	
	Field OA Cl								
Air bubbles in vials' Decontamination as	Pierd GA Ci Per GHD proceed	ent reactions?) iute? Y / N	TIN	Casing Dia Conversio Total Well Depth	ameter (mm) on Factor (L/m) on (-) Water Lo om (-)	ns 25 0.98 evel m	50 100 1.96 7.85 =) Water Column (=)	125 150 200 31.4 49.1 70.7	250 300 125.7 196.3
Was sampling equip COC updated? Y / N	oment pre-cleane Field Filtered	set?Y/N ?Y/N					Water Co	lumn (x) Conversion Factor m (x)	(=) Litres per 1 Well Volume m (=) m = 3 well vols
NO Sa	ate samples col	lected, bottles u	sed, access, co	ndition of headw	orks etc				Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack

• •

	NAGEMENT IGINEERING VIRONMENT	Purgi	ing and	Samplin	ıg Recor	d	<u></u>			Bore ID: 734	<u>)</u>
Client: Project: Proj. No.: Site: Sampler:	Job Int Peras 3310		Airport	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling I hod: ype: Y I Meter Type:	Information AN Submersible p YSI Pro Pump Depth:	4 ump	SWL:	126 ^{Bore Inform} 2-19 m	ation Logic Check: Time:50 Stick Up: Bore Diam.:	m mm
Time	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (nH units)	Ox-Red Pt. (± mV)	SWL (m)	Comment:	hidity and mont land	wen cap Secure?	
Stable	when (3	<u> </u>	+/-10%	+/_ 3%	+/- 0.05 oH	+(-10 m)(biuity, sediment toad	, sneen, odour, now rate, pl	irgea ary ?
©consecutive 1-50	e readings):	20.3	17.2%	3851	·7-10	87.5	Stable	<u>Sta</u>	dpipe		
			1.47	(spc)				مر ا	Sample	~	
			mglL	3362							
										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
·									······································		
	· · · · · · · · · · · · · · · · · · ·										/
Air bubbles Decontamin Was samplie	in vials? Y / I ation as per (I Field QA CF N Any viole GHD proceed	I necks: ent reactions? Y fure? Y / N	7/N	Well Casing Di Conversio Total Well Deptl	 Volume Calculation ameter (mm) on Factor (L/m) h (-) Water Le m (-)	ns 25 0.98 evel (50 100 125 1.96 7.85 31.4) Water Column =) m Water Column	150 200 49.1 70.7 (x) Conversion Factor	250 300, 125.7 196.3	
COC update	d?Y/N Fi	eld Piltered	?Y/N					m	(x)	_ m (=) m	= 3 well vols
	: Duplicate s Same	amples coll	ected, bottles u	sed, access, co	ndition of headw	vorks etc				Purge Volume: Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel	100 150 7.9 17.7 pack

	NAGEMENT GINEERING VIRONMENT	Purg	ing and	Samplin	ig Recor	d	<u>, </u>		Bore	• ID:
Client: Project: Proj. No.: Site: Sampler:	Paras 33/0 	Field 1 1051	fisport	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling hod: ype: Y Meter Type:	Information A Submersible YSI Pro Pump Depth:.	14 50mp	SWL Date Ref.datum Bore Depth Screer		heck: Time: <i>l:: 30, 72 / 5</i> xk Up: m Diam.: mm
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, o	dour, flow rate, purged dry?
	vreadings):		+/- 10% 3.24c 0.31mg1L	+/- 3% 25352 (SPC) 2610 (C)	+/- 0.05 pH	+/- 10 mV 26 ·			<u>DNAP/</u> - 4.298 Lo ip. NO somple.	× _ 7-101 -
Air bubbles i Decontamina Was samplin COC updated	n vials? Y / I ation as per o g equipmen i? Y / N Fi Duplicate s	Field QA Cl N Any viol GHD process t pre-cleane eld Filtered amples col	necks: ent reactions? Y ture? Y / N ected, bottles u	7 N Sed, access, co	Well Casing Di Conversio Total Well Deptl	Volume Calculation ameter (mm) on Factor (L/m) n (-) Water L _ m (-) rorks etc	ns 25 0.98 evel (50 100 1.96 7.8 =) Water Colum (=) Water Co	125 150 200 250 5 31.4 49.1 70.7 125 n	300 .7 196.3 .itres per 1 Well Volume m = 3 well vol Purge Volumes .g Int. Dia (mm) 50 Jm of casing) 2.0 7.9 *Double for gravel pack

	anagement Hgineering Hvironment	Purgi	ing and	Samplir	ng Recor	d	1 A				Bore II	PS	<u>"6</u> •
Client:	Job Ini	formation		Sample Met	Sampling i	Information		SWI	3-19	Bore Inform	nation		
Project:		190	F	WQ Meter T	уре:	YSI Pro	ump	Date			Tim	e: 3 .	.5
Proj. No.:	20		91	Flow Cell:	Y	Pump Depth:	m	Ref.datum	:		Stick U	p:	ni
Site:		C		WLeve	el Meter Type:	IP		Bore Depth	: 6. <u></u> Z		Bore Dian	1.:	nm
Sampler:	····	Τ		NAPL Chec	K:			Screer	n From:	to m	Well Cap S	ecure?	•
()	(L)	(°C)	()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbid	ity, sediment loa	d. sheen. odou	ır. flow rate, pu	rged drv?
Stable consecution	when (3 e readings):		+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 mV	stable						
		ZIS	2.7	MALA					_		^ ۱	•	
				THU!	9.2	7200			299	Se	AOK	_	
				SOC	0 -0						Ŵ	·····	
				- 0									
			mall	AIT	P				<u> </u>		•		
					1								
<u> </u>		ļ						:					
<u> </u>													
Air hubbles	in vialo? V /	Field QA Cl	necks:		Well	Volume Calculatio	ns						
Decontamin	ation as per	GHD proces	ture? Y / N		Casing Di	ameter (mm) nn Pactor (L/m)	25	50 100 196 7.8	$\frac{125}{5}$	150 200 49.1 70.7	250	300	
	/				Total Well Dept	h (-) Water Lu	evel	(=) Water Colum	<u>ן סוואי</u> חו	1 407.1 1 70.7	1 12 5.7	[190.3]	
	<u> </u>					_ m (-)	m	(=) Water Co	m olumn (x)	Conversion Facto	or (=) Litre	s per 1 Well Volu	ne
COC opdate	ng equipmen d?Y/N Fi	t pre-cleane ield Filtered	ea? Y / N ? Y / N						m (x)		m (=)	m	= 3 well vols
Comment	: Duplicate s	amples col	lected, bottles o	ised, access, co	ondition of heady	vorks etc					Casing Int Vol (L/m o *Do	<i>Purge Volumes</i> . Dia (mm) 50 f casing) 2.0 uble for gravel pa	1)0 150 7.9 17.7 ack

GHD In the	NAGEMENT GINEERING VIRONMENT	Purgi	ng and	Samplir	ng Recor	d N	A. •					Bore ID	P	87
Client: Project: Proj. No.: Site: Sampler:	Job Info	ormation 990)5)	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	Sampling hod: ype: Y el Meter Type:	Information Submersible YSI Pro Pump Depth: IP	pump m	SWL: Date: Ref.datum: Bore Depth: Screen	5.93 7- 3 6.9	Bore	<i>Inform.</i> m m m	ation Logic Chec Tim Stick U Bore Dian Well Cap St	k: e: p: 1.:	• • PA • In • Inm
Time () Stable v correcutive	Volume (L) vhen (3 .readings):		Dis.Oxygen ()	Elec.Cond () +/- 3%	pH (pH units) +/- 0.05 pH 7-22	Ox-Red Pt. (± mV) +/- 10 mV	SWL (m) stable		Comment: Colour, turbid	lity, sedime	nt load	, sheen, odou	Ir, flow rate, p	purged dry?
Air bubbles i Decontamina Was samplin COC updated	n vials? Y / N Ition as per (grequipment 1? Y / N Fin Duplicate s	Field QA Ch Any viole aHD proced proced proced for the second second for the second for the se	ecks: ent reactions? Y ture? Y / N d? Y / N ? Y / N ected, bottles L	Y / N Used, access, co	Well Casing Di Conversio Total Well Dept	Volume Calculati ameter (mm) On Factor (L/m h (-) Water L _ m (-)	ons 25 0.98 evel m	50 100 1.96 7.83 =) Water Colum (≕)	125 5 31.4 n m (x)	15.0 49.1 Conversior	200 70.7	250 125.7 (=) Litree m (=) Casing Int Vol (L/m o *Dou	300 196.3 s per 1 Well Vo n <i>Purge Volumee</i> . Dia (mm) 50 f casing) 2.0 uble for gravel	lume n = 3 well vols s 100 150 7.9 17.7 pack

Client: Project: roj. No.: te: ampler:	Job Info		51	Sample Meti WQ Meter Ty Flow Cell: WLevel	Sampling nod: ype: Y Meter Type:	Submersible YSI Pro Pump Depth:.	pump m	Ref.da Bore D	SWL: Date: . atum: . epth:	2.8		e Informati m L m	on Logic Cheo Tim Stick L Bore Diar	ck:	
Time	Volume (L)	Temp (°C)	Dis.Oxygen	Elec.Cond	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)			Comment:	dity sodim	ent load	sheen odo	ur flow rate	
Stable w	hen (3 readings):		+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10 014	stable	()		arry, seam	ent load, s	sneen, ouo	ar, now rate, p	Jurged un
	1 %	1.7	4.1	1570	7.57	74	9								
			•	806						NC	S	AF	121	6	
										-					
			92	100						17	ad	21			
		4		6.10						9	21			•	_
			ad II	6											_
				-											-
										_					
									-						
					/										
		ield QA Ch	necks:		Well	Volume Calculatio	ons	<u> </u>							-
bubbles in ontamina	n vials? Y / N tion as per (Any viole	ent reactions? V lure? Y / N	Y/N	Casing Di	ameter (mm)	25	50	100	125	15.0	200	250	300	
		/	/		Conversio	on Factor (L/m)	0.98	1.96	7.85	31.4	49.1	70.7	125.7	196.3	
	/	/				m (-)	m	(=) water (=)		_ m					
s samplin	equipment	pre-cleane	ed?Y/N					W a	iter Colu	mn (x) m (x)	Conversi	on Factor	(=) Litre	s per 1 Well Vo	n ne
C updated	?Y/N Fie	eld Filtered	? Y / N						_						= 3 well
omment:	Duplicate s	amples coll	ected, bottles u	used, access, co	ndition of headv	vorks etc							Casing In Vol (L/m c *Do	Purge Volume t. Dia (mm) 50 of casing) 2.0 puble for gravel	s 100 15 7.9 17.3 pack

GHD	ANAGEMENT IGINEERING IVIRONMENT	Purg	ing and	Samplir	ng Recor	d	1						Bore II	P	39	2
Client: Project: Proj. No.:	Job Inf	ormation 96	E1	Sample Met WQ Meter T Flow Cell:	<i>Sampling</i> hod: ype: Y	Submersible p YSI Pro Pump Depth:	oump.	Bef	SWL: Date: 9	1-6	79	me Informat	tion Logic Cheo Tin Stick I	ck: 1e:		
Site: Sampler:	36	•		WLeve	I Meter Type: k:	IP		Bore	Depth:	5.9	7	. m• m	Bore Diar Well Cap S	n.: ecure?	inn	1
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	рН (pH units)	Ox-Red Pt. (± mV)	SWL (m)	() C	comment: colour, turbic	dity, sedin	nent load,	sheen, odo	ur, flow rate	e, pu ge	d dry?
consecutiv	e readings):	RE	+/- 10%	+/- 3%	+/- 0.05 pH	+/- 10.mV	stable									
			1.	Sec		-7				NG	5	9.0-	ple			
			143	-											-	
			ingli	6,000						Ga	57	C				
				C								144				
										-					-	
							_								-	
bubbles	in vials? Y / I ation as per (Any viol	lent reactions?) dure? Y / N	(/N	Casing Di	Volume Calculation ameter (mm)	25	50	100	125	15.0	200	250	300	1	
as samplin OC update	ng equipment d? Y / N Fi	pre-cleane	ed? Y / N		Total Well Dept	on Factor (L/m) h (-) Water Le _ m (-)	0.98 evel m	(=) Water (=) Water	7.85 Column /ater Colur		Conversi	70.7	(=) Litre m (=)	196.3 s per 1 Well	Volume m	
omment	Duplicate s	amples col	lected, bottles u	ised, access, co	ondition of head	works etc							Casing Int Vol (L/m c *Do	Purge Volui . Dia (mm) of casing) uble for grav	mes 50 100 2.0 7.9 vel pack	150 17.7
								1								
								Paren .								

	NAGEMENT GINEE SING VIRONMENT	Purgi	ng and	Samplin	ig Recor	d	<u>ن</u> .			Bore ID:	ĽO
Client: Project: Proj. No.:	Job Ini Para 33)9	formation frield 051	Airpoo	Sample Met WQ Meter T Flow Cell:	Sampling i hod: ype: Y	Submersible p YSI Pro Pump Depth:	m	SWL: Date: Ref.datum:	2-986 Bore Informat 7-2-18	tion Logic Check: Time:/.Z:3 Stick Up:	0 PM m
Site: Sampler:	<u> </u>	<u>-1 Cl</u>	nance	WLeve NAPL Checl	el Meter Type:	∕₽ ~ 2		Bore Depth: Screen	From: to m	Bore Diam.:	mm 1.e.5
Time ()	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, s	sheen, odour, flow rate, pu	rged dry?
consecutive 12.30	readings):	21.3	+/- 10% 17.2%	+/-3% 4-398	+/- 0.05 pH 7.59	+/- 10 mV 97.6	stable .		DUAPL 3.72	24 - Be 5. 9	08
			1.57 MgLL	4094					Bailer check	-no v	sual
· · · · ·									evidence of	P WAPL	*
									NO odor [Sh Palebraun	en	
									fine Sand in low-ned to,	botton of A	15
Air bubbles i Decontamina	n vials? Y / I Ition as per (Field QA Ch Any viole GHD proced	ecks: ent reactions? Y ure?Y N	(N)	Well Casing Di. Conversio Total Well Depth	Volume Calculatio ameter (mm) on Factor (L/m) i (-) Water Le _ m (-)	ns 25 0.98 evel (m	50 100 1.96 7.85 =) Water Column (=) Water Col	125 150 200 31.4 49.1 70.7	250 300 125.7 196.3	me
Was samplin COC updated	g equipmen 1?///N Fi	t pre-cleane eld Filtered	d?(Y/N ? Y /N					-	m (x)	m (=) m	= 3 well vols
$\frac{1}{1}$	PFF	amples coll	ected, bottles u	sed, access, co	ndition of headw	orks etc		· · · · · · · · · · · · · · · · · · ·		Purge Volumes Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel p	100 150 7.9 17.7 ack
								:			

Client: Project: Proj. No.: Site: Sampler:	Job Int Paraf 331990	Purgi	Airpane	Sample Met WQ Meter T Flow Cell: WLeve NAPL Check	sampling F Sampling F hod: ype: Y	d Submersible p YSI Pro Pump Depth:		Ref.d Bore I	SWL: Date: atum: Depth: Screen	Bore ID: P4-Z 3-317 Bore Information m Logic Check: Time: 12:00 PM Stick Up: m Stick Up: m From: to m Well Cap Secure?
Time	Volume	Temp	Dis.Oxygen	Elec.Cond	рН	Ox-Red Pt.	SWL			Comment:
Stable w	then (3	(0)	()	()	(pH units)	(± mv)	(m)	()	Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?
in consecutive	readings):	al E	+7-10%			+/- 10 mV	stable			
Icu		21.2	-0.9].	SIST	1.00	10.4			-	DNA12 - 4.062 - 5.843
			-	(SIC)			1		-	Diff.
				7503					-	Barler Chich. Do evidence
				(C)						(UISVAN) OF DUAPL.
							1.1		1	AZCI ODOW Shepin -:
								125		
							<u>.</u>			Pale braun clar:
									A	Fine Sond in botton of H15.
										low-ned torbiclity.
			14							
ir bubbles i	n vials? Y /	<i>Field QA CI</i> N ∕ Any viol	hecks: ent reactions? `	rN	Well	Volume Calculation	ns Das	50	100	2 125 150 200 250 200
econtamina	tion as per	GHD proced	lure? Y) N		Conversio	on Factor (L/m)	0.98	1.96	7.85	5 31.4 49.1 70.7 125.7 196.3
			1000		Total Well Dept	h (-) Water Le	evel	(=) Water	Column	in a second s
Vas samplin OC updated	gequipmen 17Y/N Fi	t pre-cleane ield Filtered	d?(Y/N ?Y/N)			(•)	m	(-)	ater Col	m plumn (x) Conversion Factor (=) Litres per 1 Well Volume m (x) m (=) m = 3 well vols
Comment: しメ f	Duplicate s	amples coll bott le	Ensin	ised, access, co	ndition of headw	vorks etc	-			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack

	ANAGEMENT NGINEERING IVIRONMENT Job Int	Purg	ing and	Sampliı	ng Recor	d			Bore ID: P4Z.
Client: Project: Proj. No.: Site: Sampler:	Client: Profield Aisput Sample Method: Submersible pump roject: bj. No.: 3319051 Flow Cell: Y Pump Depth:m WLevel Meter Type: IP. NAPL Check:								3.476 m Logic Check: 7-2-17 Time: .11: 4.0A Stick Up:
Time () Stable v	Volume (L) when (3	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment:
consecutive	readings):	22.5	+/-10%	+/- 3% 214-Z SPC	+/- 0.05 pH	+/- 10 mV	stable		$\frac{DNAPL}{4} \frac{4 \cdot 22L}{5} = 5.943$
			7.57 MBIL	2002 C					Bauler Check - wir entidence (visual) of DNAPL.
									No adarr .
	1								Pale brass - clay
									Sond in bottom of 1-15.
Air bubbles in Decontaminat	F vials? Y //N ion as per O	Any viole Any viole Any procedu	ecks: nt reactions? Y ure? Y)	R	Well V Casing Dia Conversio Total Well Depth	/olume Calculation imeter (mm) n Factor (L/m) (-) Water Lei m (-)	as 25 0.98 vel (50 100 1.96 7.85 =) Water Column (=)	125 150 200 250 300 31.4 49.1 70.7 125.7 196.3
Was sampling COC updated Comment:	Y/N Fiel	pre-cleaned Id Filtered?			- 10 a m			Water Colu	mn (x) Conversion Factor (≕) Litres per 1 Well Volume m (x)m (≕)m = 3 well vols
3×	PFA	S 10	octiles (ENU (alition of headwo	rks etc QA0 <u>1</u>	, -	QAOZ	Collected Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack

. Will

	NAGEMENT SINEERING VRONMENT	Purgi	ing and	Samplin	g Recor	d			Bore ID:		
Client: Project: Proj. No.: Site: Sampler:	Job Infr Porce 33Pic Tech	ormation Field 051	l Ainpon	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling i hod: ype: Y I Meter Type: c: <u>भू८५</u>	nformation H Submersible p YSI Pro Pump Depth:.	Bore Information SWL:				
Time () Stable v	Volume (L)	Temp (°C)	Dis.Oxygen ()	Elec.Cond ()	pH (pH units)	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?		
	readings):	21.4	4.04. 9.04. 0.53 MBIL	4609 50C		+/- 10 mV 104 · 4 ·	stable		DNAPL - 4.6×1 - 5.604(30) Recorded by ip 3		
			Here a	4306 2					Briver Checked - unchle to visually confirm presence OF DNAPL.		
									No octour / Sheen		
									Pale brown - day		
Air bubbles i Decontamina Was samplin	n vials? Y / tion as per g equipment	Field QA Cl V Any viol 3HD proced	hecks: ent reactions? Jure? Y / N		Well Casing Di Conversio Total Well Dept	Volume Calculatio ameter (mm) on Factor (L/m) n (-) Water L _ m (-)	nns 25 0.98 evel (m	50 100 1.96 7.85 ≕) Water Columi (=) Water Co	125 150 200 250 300 31.4 49.1 70.7 125.7 196.3 m m (x) Conversion Factor (=) Litres per 1 Well Volume		
COC updated	Duplicate s	amples col	ected, bottles i Halle (E	ised, access, co ترین روز کرد	ndition of headw	rorks etc	1		m (x) m (=) m = 3 well vols Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack		

CHD AN	NAGEMENT GINEERING VIRONMENT	Purg	ing and	Samplin	g Recor	d	<u> </u>	•					Bore II	:	244
Client: Project: Proj. No.: Site: Sampler:	Paraf 3319	formation Field 9051	Aupart	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Ile Method: Submersible pump Ileter Type: YSI Pro v Cell: Y Pump Depth:m WLevel Meter Type: IP Check:				SWL: . Date: . atum: . epth: . creen F	3.88 7-2 6.0	7 ^{во} -1 ^е 23	re Informati m l m m	^{ion} Logic Chea Tin Stick L Bore Diar Well Can S	ck: ne: ./.:.C(Jp: n.: ecure?	ë PM m m
Time () Stable w consecutive	Volume (L) hen (3 readings):	Temp (°C) - 20.5	Dis.Oxygen () +/- 10%	Elec.Cond () +/- 3%	/ pH (pH units) +/- 0.05 pH 7 · 4-5	0x-Red Pt. (± mV) +/- 10 mV 90 · 2.	SWL (m) stable	() C	Comment: Colour, turbid	lity, sedim	ent load, s	sheen, odou	r, flow rate, — 6	$r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r$
			7.58 1.58 ng/L	(5/pC) 303) (C)						Barle Barle evide	P · / Cl xe	hed af	n DNA!	0 UIŠI >2.)c_L
4877-1-							· · · · · · · · · · · · · · · · · · ·			Porte (NO O Fine (bran dow Drang	-15h	een d in	, botter	1 of 1-15
		Fiejd QA Ci	hecks:		Well	Volume Calculatio	ns			10m -	med		rbidi	ty :	
Air bubbles in Decontamina	n vials? Y () tion as per (N ⁄Any viol GHD procec	ent reactions?) iure7 Y / N		Casing Di Conversio Total Well Deptr	ameter (mm) on Factor (L/m) n (-) Water Le _ m (-)	25 0.98 evel m	50 1.96 =) Water C (=) Wa	100 7.85 Column ter Colu	125 31.4 m(x)	150 49.1	200 70.7	(=) itree	300 196.3	olyme
Was samplin COC updated Comment:	g equipmen ?Y LN Fi Duplicate s	it pre-cleane ield Filtered amples coll 75 b	$\frac{1}{2} \frac{1}{2} \frac{1}$	њеd, access, co Enurrala	ndition of headw	orks etc 🕫				m (x)			Casing In Vol (L/m c	Purge Volum t. Dia (mm) 5 of casing) 2 uble for grave	ec 0 100 150 0 7.9 17.7 el pack

۰.,

GHD	KANAGEMENT NGINEEBING NVIRONMENT	Purg	ing and	l Sampl	ing Reco	ord		Bore ID: GWP1 -					
Client: Project: Proj. No.: Sampler:	Job Info Parafi GME 33190 JC/1	rmation eld A <u>55</u> 1 Tv/	: <u>rpoc</u> t	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	sampling i thod:	Information ノ <i>に良.</i>] Pump Depth:/ Dip / Fox / Int.F	<u>v) A</u> m ce / Gge	SWL: 6 0 46 Bore Information Date: 124-3-19 m Logic Check: 12:00 P M Ref.datum: Time: 12:00 P M Bore Depth: 9:4-73 m Bore Diam.: 50 Screen From: 3 to 6 m Well Cap Secure?					
Time ()	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen	Ox-Red Pt. (± mV)	SWL (m)	Comment: () Colour, turbidity, sediment load, sheen, adour, flow rate, purged dor?					
Stable consecutiv	when (3 e readings):		+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	(initially) second is second a sheek, bubbli, now rate, purged dry?					
		20.8	с с		<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	[25-9		Stadpipe Pale brown / Clear Sediment al hottom of H/S medium turbitity NO odour					
Air bubbles Decontamina Was samplir COC update Comment	Fi in vials?. Ation as per G ng equipment d?Y/N Fie Duplicate sa FAS Ex	eld QA Che Any viole HD procedi pre-cleaned Id Filtered? Imples colle	Cks: nt reactions? $Ure?(Y N)$ $P(Y N)$ $Cted, bottles$ $M = U(1)$	y / (used, access, c	Well r = 0.025m R = 0.05 m H = height of wat h = thickness of condition of head	Volume Calculatio H = h = er col (m) sat. filterpack (m) tworks etc	ns R = Bore Radi r = PVC radius	$PV = [(H \times \pi \times r^{2}) + 0.2 (h \times \pi \times (R^{2} - r^{2}))] \times 1000$ $PV =$ is = 1 well volume = 3 well vols $Purge Volumes$ Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 7.9 17.7 "Double for gravel pack					

Sample information Bample information Bow Information Submeter Symple: Colspan="2">Deter Information Submeter Symple: Colspan= PH Elec Cond Dis Oxygen Ox. Int. Fee / Gge Multicle Information Submeter Symple: Colspan= Symple: Colspan= Symple: Symple: Colspan= Symple: Colspa= Symple: Colsp	GHD MAN ENG ENV	IAGEMENT INEERING IRONMENT	Purgi	ing and	l Sampli	ing Reco	ord		Bore ID: GLAPZ-P						
Time Volume Temp pH Elec.Cond Dis.Oxygen Ox.Red Pt. SWL Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry? Schew Wend -	Client: / Project: . Proj. No.: . Sampler: .	Job Infor Prafi GME 334	mation e.dl. 105	Aixpo.A	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	Sampling I hod: ype: Y / N Meter Type: k:	nformation Pump Depth: Dip / Fox / Int.Fc	m se / Gge	Bore Information SWL: 3.471 Date:						
Image: Construction of the state of the	Time	Volume	Temp	рН	Elec.Cond	Dis.Oxygen	Ox-Red Pt.	SWL		Comment:					
Decomposition - 4/2.05 pH +/-10% +/-10% +/-10% stable 215 77.6 77.8 21.0 14.21 21.8 - Standprive 216 217 21.8 - 5.4 - - - 216 217 31.8 -	Stable wi	(L)	(°C)	(pH units)	(S.L)	()	(± mV)	(m)	()	Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?					
$\frac{2.15}{1.513} + \frac{2.16}{1.513} + \frac{2.16}{1.513} + \frac{2.16}{1.513} + \frac{5}{1.513} + $	onsecutive i	readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	15						
$\frac{1}{10000000000000000000000000000000000$?.15		27:6	7.73	2110	14.29	121.8			Stadpipe.					
$\frac{1}{1} + \frac{1}{1} + \frac{1}$										Clear yellow					
Field QA Checks: Well Volume Calculations Field QA Checks: Well Volume Calculations Field QA Checks: Field Galaxies bubbles in vials? Y/M* Any violent reactions? Y/M r= 0.025m H= height of water coll (m) R = Bore Racius Field Galaxies = Imment: Duplicate samples collected, bottles used, access, condition of headworks etc Purge Volumes										fine sediment in bottom					
Image: Solution of headworks etc Well volume Calculations PV = [(H × m × r^2) + 0.2 (h × m × (R^2 - r^2))] × 1000 PV = [(H × m × r^2										OF HS.					
Field QA Checks: Well Volume Calculations r bubbles in vials? Y.H. Any violent reactions? Y.H. as sampling equipment pre-cleaned? Y.H. Field Filtered? Y.H. Field? Y.H. Field Filtered? Y.H. Field? Y.H. Fie										No odbur Sheen					
Field QA Checks: Well Volume Calculations bubbles in vials? Y-M* Any violent reactions? Y / N Image: Contamination as per GHD procedure Y/N Field QA Checks: Well Volume Calculations r = 0.025m H = PV = [(H x m x r ²) + 0.2 (h x m x (R ² - r ²))] x 1000 PV = H = height of water col (m) R = 0.05 m h = H = height of water col (m) R = Bore Racius h = thickness of sat. filterpack (m) r = VC radius (m) h = thickness of sat. filterpack (m) r = VC radius (m) purge Volumes Purge Volumes		-								law turbiclity.					
Field QA Checks: Well Volume Calculations bubbles in vials? Y_HX Any violent reactions? Y / N Image: State of the stat															
Field QA Checks: Well Volume Calculations bubbles in vials? Y IN Any violent reactions? Y IN r = 0.025m H = contamination as per GHD procedure? Y IN r = 0.025m H = s sampling equipment pre-cleaned? Y IN R = 0.05 m h = H = height of water col (m) R = Bore Racius = h = thickness of sat. filterpack (m) r = PVC radius (m) = = 1 well volume = 3 well vols imment: Duplicate samples collected, bottles used, access, condition of headworks etc Purge Volumes = Purge Volumes		_													
Field QA Checks: Well Volume Calculations bubbles in vials? Y/M Any violent reactions? Y/N $r = 0.025m$ $H =$ contamination as per GHD procedure? Y/N $r = 0.025m$ $H =$ s sampling equipment pre-cleaned? Y/N $R = 0.05 m$ $h =$ C updated? Y/N Field Filtered? Y/N $R = bore Racius$ $=$ h = thickness of sat. filterpack (m) $r = PVC radius (m)$ $=$ $=$ 1 well volume $=$ 3 well vols imment: Duplicate samples collected, bottles used, access, condition of headworks etc Purge Volumes $=$															
omment: Duplicate samples collected, bottles used, access, condition of headworks etc	r bubbles in contaminati as sampling DC updated	Fi vials? Y H ion as per G equipment Y J N Fie	eld QA Che Any viole HD procedu pre-cleaned Id Filtered?	ecks: int reactions? ure&Y/N d?Y/N ?Y/N	YIN	<i>Well</i> r = 0.025m R = 0.05 m H = height of wat h = thickness of	Volume Calculation H = h = ter col (m) sat. filterpack (m)	ns R = Bore Radi r = PVC radius	us s (m)	PV = [(H x π x r ²) + 0.2 (h x π x (R ² - r ²))] x 1000 PV = = = = = = = = 1 well volume = 3 well vols					
X PFAS Envirolab bottle. *Double for gravel pack	omment: I	Duplicate sa	mples colle		used, access, c ab ba	ondition of head	lworks etc			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack					

Client: Project: Proj. No.: Sampler:	Job Info Parch GINEERING Job Info Parch GME	Purgi	ing and Aiger L	Sample Met Sample Met WQ Meter T Flow Cell WLeve NAPL Chec	sampling II hod:	Pump Depth: Dip / Fox / Int.Fo	Bore ID: GWP3- Bore Information SWL: 3-909 m Logic Check: Date: 4-3-19 m Logic Check: Time: 11-15 AM Ref.datum: Stick Up: m Bore Depth: 5-283 m Bore Diam.: 50 m Screen From: 3 to 6 m Well Cap Secure? 65					
Time	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Okygen	Ox-Red Pt. (+ mV)	SWL		Comment:			
Stable w	vhen (3 readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?			
1.15	roddingoj.	22.4	7.81	3619.	40.31. 3.75ms1	154.0		-	Stadpipe.			
									Clear pale brown			
		~	2.2						low turbidity / Sedinent.			
				-					No odar Sheen.			
					n An	R.,	x -					
				de se	No. State		2					
				Construction of the second	-	-	14	11.25				
		-										
				and a second		10		×				
bubbles in ontamina s sampling C updated	F n vials? Y /(N tion as per C requipment ? Y / N Fie	ield QA Che Any viole HD procedu pre-cleaned eld Filtered?	ecks: nt reactions? ure? Y/N d? Y/N Y/N	YIN	Well N $r = 0.025m$ $R = 0.05 m$ $H = height of wath$ $h = thickness of s$	/olume Calculatio H = h = er col (m) sat. filterpack (m)	ns R = Bore Rad r = PVC radius	us s (m)	$PV = [(H \times \pi \times r') + 0.2 (h \times \pi \times (R' - r'))] \times 1000$ $PV = = = = = 1 \text{ well volume} = 3 \text{ well vols}$			
nment: X F	Duplicate si TAS	amples colle bot	ected, bottles	used, access, c	ondition of head	works etc			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack			

ENVISONMENT Purging an	d Sampling Record	Bore ID: P9
Job Information Client: Parafield dispos Project: GME Proj. No.: 3319051 Sampler: J.C. / T.W	Sampling Information Sample Method:	Bore Information SWL: 2.667 m Logic Check:
Time Volume Temp pH () (L) (°C) (pH units	Elec.Cond Dis.Oxygen Ox-Red Pt. SWL () (± mV) (m)	Comment: () Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?
Stable write(13) - +/- 0.05 p 1) 30 22 7.94	H +/- 3% +/- 10% +/- 10 mV stable 3417 14.21.94.6 1.06 51 	- Pale brown chear 1000 furbidity sectionent 1000 daw sheen
Field QA Checks: Air bubbles in vials? YN Any violent reaction: Decontamination as per GHD procedure? YN Was sampling equipment pre-cleaned? YN COC updated? YN Field Filtered? YN COC updated? YN Field Filtered? YN Comment: Duplicate samples collected, botth X HAS both	Well Volume Calculations r = 0.025m H = R = 0.05 m h = H = height of water col (m) R = Bore Rad h = thickness of sat. filterpack (m) r = PVC radiu es used, access, condition of headworks etc	$PV = [(H \times \pi \times r') + 0.2 (h \times \pi \times (R' - r'))] \times 1000$ $PV =$ ius = s (m) = 1 well volume = 3 well vols $Purge Volumes$ Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel pack

	ANAGEMENT	_				4.	079	2-SWL 5.647 Bore depth	/ 1
	IVIRONMENT	Purg	ing and	l Sampli	ng Reco	ord	•	Bore ID:	4
Client: Project: Proj. No.: Sampler:	Job Info Parafi GME 33190 JC/1	mation eld 5	Airport	Sample Met WQ Meter T Flow Cell:(WLevel NAPL Checl	Sampling I hod:HS ype:FlO Y) N Meter Type: <y.c.s< th=""><th>Information</th><th>NAm ce / Gge</th><th>SWL: 4.079 Bore Information Date: 1.4319 m Logic Check: Date: 1.4319 Time: Ref.datum: Stick Up: m Bore Depth: 5:</th><th></th></y.c.s<>	Information	NAm ce / Gge	SWL: 4.079 Bore Information Date: 1.4319 m Logic Check: Date: 1.4319 Time: Ref.datum: Stick Up: m Bore Depth: 5:	
Time ar	, Volume	Temp	pН	Elec.Cond	Dis.Oxygen	Ox-Red Pt.	SWL	Comment:	
() Stable	(L) when (3	(,,)	(pH units)	_ (≫.⊁≻)	()	(± mV)	(m)	() Colour, turbidity, sediment load, sheen, odour, flow rate, purged dry?	
consecutive	e readings):		7.9	2-65	47-10% Ц]-67. З-ЧЧ Mg/	153.8		Stand pipe Pale brown Sediment load at bottom of Medium turbitity NO Sheen or odour	Η
Air bubbles i Decontamina Was samplir COC update	F in vials? Y / N ation as per G g equipment d? Y / N Fie	ield QA Che Any viole HD proced pre-cleane Id Filtered?	ecks: nt reactions? ure? Y / N d? Y / N ? Y / N	Y / N	<i>Well</i> r = 0.025m R = 0.05 m H = height of wa h = thickness of	Volume Calculatio H = h = ter col (m) sat. filterpack (m)	ons R = Bore Rad r = PVC radiu	$PV = [(H \times \pi \times r^{2}) + 0.2 (h \times \pi \times (R^{2} - r^{2}))] \times 1000$ $PV =$ adjus = = 1 well volume = 3 well vols	
Comment	: Duplicate si	amples coll	ected, bottles	used, access, c	ondition of head	lworks etc		Purge Volumes Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel pack	

GHD	ANAGEMENT NGINEERING IVIRONMENT	Purg	ing and	d Sampli	ing Reco	ord			Bore ID:3	35				
Client: Project: Proj. No.: Sampler:	Job Information Client: Parafield Airport roject: GME J. No.: 331.90.51 impler: JC / T.N. Sample Method: H/S Sample Method: H/S NAPL Check:								SWL: 4 81 Bore Information Date: 14 3 14 Date: 14 3 14 Ref.datum: Stick Up: m Bore Depth: 7 14 m Screen From: 3					
Time ()	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen ()	Ox-Red Pt. (± mV)	SWL (m)	()	Comment: Colour, turbidity, sediment load, sheen, odour, flow rate, purge	ed dry?				
Stable consecutive	when (3 e readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable							
		readings): - +/-0.05 pH +/-3% +/-10% +/-10 mV stable 21.8 8.08 14.317. 30'/. 174-4 2.54 mg/ 2.54 mg/ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Pale brown / clear medium turbitity Fine sand at bottom of H No odoar or sheen					
Air bubbles Decontamina Was samplir COC update Comment	n vials? Y (N ation as per C g equipment d? Y/N Fie Duplicate sa	Any viole Any viole HD proced pre-cleane Id Filtered amples coll	L ecks: ure 2 Y N d? Y N ? Y N ected, bottles	used, access, c	Well r = 0.025m R = 0.05 m H = height of wat h = thickness of condition of head	Volume Calculation H = h = ter col (m) sat. filterpack (m) works etc	R = Bore Radi r = PVC radius	l ius s (m)	$PV = [(H \times \pi \times r^{2}) + 0.2 (h \times \pi \times (R^{2} - r^{2}))] \times 1000$ $PV =$ $=$ $=$ $=$ $= 1 \text{ well volume}$ $Casing Int. Dia (mm) 50$ $Vol (L/m of casing) 2.0$ $*Double for gravel pack$	3 well vols 0 150 9 17.7				

GHD H	ANAGEMENT IGINEERING IVIRONMENT	Purgi	ng and	I Sampli	ing Reco	ord			Bore ID:
Client: Project: Proj. No.: Sampler:	Job Infol Parafi G.M. 3319 JC/	mation E.C 70.5. T.W.	Airpart	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	Sampling I hod:	Information S S JC.C.I.J Pump Depth: Dip / Fox / Int.F		SWI Date Ref.datun Bore Depti Scree	L: 333 Bore Information m: 333 m Logic Check: e: 14-3-19 Time: 10.30 n: Stick Up: m h: 5.268 m Bore Diam.: 50 en From: Jto. m Well Cap Secure? 10.50
Time ()	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen ('/)	Ox-Red Pt. (± mV)	SWL	()	Comment:
Stable v	when (3 readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	colour, turbiaity, seament load, sneen, odour, now rate, purged ary?
10.30	- Country of t	22.2	7.65	4173%	14%. 1.19mg	125.3			Pale brann.
					7				low turbidity
									Sediment load - fine HS. in botton of HS.
									vo odar sheen.
Air bubbles i Decontamina Was samplin COC updated	Fin vials? Y	ield QA Che Any viole HD procedu pre-cleaned Id Filtered?	cks: nt reactions? ure?(V/N I? Y/N Y/N	YIN	<i>Well</i> r = 0.025m R = 0.05 m H = height of wa h = thickness of	Volume Calculation H = h = ter col (m) sat. filterpack (m)	ns R = Bore Radi r = PVC radius	ius s (m)	PV = [(H x π x r') + 0.2 (h x π x (R' - r'))] x 1000 PV = = = = = = = 1 well volume = 3 well vol
Comment: ∖ ×	Duplicate sa	ENJW	olab	used, access, o both le	condition of head	dworks etc			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack

Client: Project: oj. No.: ampler:	Job Info Peref GME 3319 SC	rmation i.e.l.d i.e.l.	AirpoA	Sample Met WQ Meter T Flow Cell WLeve NAPL Chec	Sampling I hod:H.S ype:Flow ype:Flow yJ N YJ N I Meter Type: k:Yes	nformation Cell Pump Depth: Dip / Fox / Int.Fo	⊲.Am ce / Gge	Bore Information SWL: 3.132 Date: 14-3-19 Time: 8:30 AM Ref.datum: 5.9.2.3 Bore Depth: 5.9.2.3 Bore Diam: 50 M Bore Diam: 50 Screen From: 3.0, to, 6.0, m Well Cap Secure? 465						
Time)	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen	Ox-Red Pt. (± mV)	SWL (m)		Comment:					
Stable v	when (3 e readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	Colour, turbianty, sediment load, sneen, odour, now rate, purged dry?					
5.30		20.7	7.86	4056	14.57.	152-5		-	10					
									Tale brand.					
	-				1.61									
					ngl				Sediment load - fine					
					2				sad in bottom of HIS.					
									High terbidy.					
									No odur Sheen.					
		-				1		1						
			4											
r bubbles i contamina as samplin DC updated	F n vials? Y H ation as per G g equipment d? YV N Fie	Any viole Any viole HD proced pre-cleaned d Filtered	ecks: nt reactions? ure? Y/ N d? Y/N Y/N	YN	<i>Well</i> r = 0.025m R = 0.05 m H = height of wat h = thickness of	Volume Calculatio H = h = ter col (m) sat_filternack (m)	R = Bore Rad	ius	PV = [(H x π x r ²) + 0.2 (h x π x (R ² - r ²))] x 1000 PV = =					
omment:	Duplicate sa PFAS	amples colle Cnu	volcb	used, access, o botiles	condition of head	works etc	QACZ	s (m) *	= = 1 well volume = 3 well vols Purge Volumes Casing Int. Dia (mm) 50 Vol (L/m of casing) 2.0 *Double for gravel pack					

GHD	IGINEERING VIRONMENT	Purg	ing and	I Sampli	ing Reco	ord			Bore ID: P4/					
Client: Project: Proj. No.: Sampler:	Job Information Sampling Information Client: Project: Sample Method: Project: G.M.C. Sample Method: roj. No.: SSIGG51 Flow Cell: Y/N Pump Depth: J.M.Am WLevel Meter Type: Dip / Fox / Int.Fce / Gge NAPL Check: Multiple Check: Time Volume Temp								SWL: 3:42 Bore Information Date:					
Time ()	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen	Ox-Red Pt. (± mV)	SWL (m)		Comment:					
Stable v	when (3 readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	colour, turbianty, seament load, sneen, odour, now rate, purged dry?					
9A.Y		21.3	7.73	3287	20%	155			Pale - medin branch					
1.1					1.77%			-						
								-	No odow /sheen					
-						1			,					
									Sectionent load - fire sends					
-	-							-	in hotton of HS.					
									1 a hashidi ba					
									Com FOYBICUTO					
			1											
						1								
						El								
Air bubbles i Decontamina	Fin vials? Y/N	ield QA Cho Any viole	ecks: ent reactions?	Y /N	<i>Well</i> r = 0.025m R = 0.05 m	Volume Calculatio H = b =	ons		PV = [(H x π x r ²) + 0.2 (h x π x (R ² - r ²))] x 1000					
Was samplin COC updated	g equipment	pre-cleane	d?YAN		H = height of wat h = thickness of	ter col (m) sat. filterpack (m)	R = Bore Radi r = PVC radius	ius s (m)	= = = 1 well volume = 3 well vols					
$\frac{1}{2}$	Duplicate sa	Enu i	ected, bottles	used, access, o	condition of head	works etc			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack					

Client: roject: oj. No.: mpler:	Job Infor Paraga GME 3319 50	rmation e. l.d4 0.5 - 1. T	ixpoA	Sample Met WQ Meter T Flow Cell: WLeve NAPL Checl	Sampling Ji hod:H.S. ype: <u>f.lo</u> YJN Meter Type: k: <u>M.C.S.</u>	nformation Cell Pump Depth: A Dip / Fox / Int.Fo	:	SWL Date Ref.datum Bore Depth Scree	3.634 Bore Information m Logic Check: 14318 Time: 9:30 A Stick Up: m 5.927 m Bore Diam.: 50 mm From: 3. to. 6. m Well Cap Secure? 425	~> -
Time	Volume	Temp (°C)	pH (pH unite)	Elec.Cond	Dis.Oxygen	Ox-Red Pt.	SWL		Comment:	
Stable v	when (3	(0)		(()	(± 1117)	(m)	()	Colour, turbidity, sediment load, sheen, odour, flow rate, purged dr	y?
onsecutive	e readings):	22.7	+7- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable			
9.50		26.5	8.10	-1848	42.9	155.5	-	-	Pale brown	
-							_			
					3.64				No odar / Sheen	
					ngl					
÷				A.					Sectionent lead - Fine Sin	-/
									Find the second second	~
			1	and a					in botton of FD	
			n n		_					
	1			1 .	-				16w- Medium turbichty	-
-	A	7								
10	2	100								_
				-						_
				1						
_										
	1									
r bubbles i contamina as samplin DC updated	Fi n vials? Y / N ation as per 6 g equipment d? Y / N Fie	Any viole Any viole HD proced pre-cleaned Id Filtered	ecks: nt reactions? ure? Y / N d? Y / N P Y / N	YIN	Well r = 0.025mR = 0.05 mH = height of wath = thickness of	Volume Calculation H = h = er col (m) sat. filterpack (m)	ns R = Bore Rad r = PVC radius	us s (m)	PV = [(H x π x r ²) + 0.2 (h x π x (R ² - r ²))] x 1000 PV = = = = = 1 well volume = 3 well	vols
omment:	E Duplicate sa RASE	amples colle	ected, bottles	used, access, c	ondition of head	works etc			Purge Volumes Casing Int. Dia (mm) 50 100 15 Vol (L/m of casing) 2.0 7.9 17. *Double for gravel pack	i0 7

Client: oject: j. No.: npler:	Job Info Paraf GME 3310	mation Field 1051	<u>Aspe</u> A	Sample Met WQ Meter T Flow Cell WLeve NAPL Chec	Sampling I hod:	Pump Depth:A	A.m ce / Gge	SWL Date Ref.datum Bore Depth Screer	Bore Information :
Time)	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen	Ox-Red Pt. (± mV)	SWL (m)		Comment:
Stable	when (3 e readings):	-	+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	bolour, turbiany, sediment load, sneen, odour, now rate, purged dry?
OAM		27	7.55	4744	24-7	152 6	-	-	well complus blocked
1							- Se - 1		unable to determine
-					203				bae depth.
					ngil			1	
				-	0		1.1.1		disp bailer.
-							_		
	-							to a	pale bows
	-			-					
				-					No odow Sheer .
1	-							-	
									high turbidity
	1								lich sati + lood :
									nigh statual loge
	1		- n			÷.			
bubbles ontamina s samplir C update	Finn vials? Y/N ation as per G g equipment d? Y/N Fie	ield QA Ch Any viole HD proced pre-cleane Id Filtered	ecks: ent reactions? lure?Y/N d?Y/N ?Y/N	YN	Well r = 0.025m R = 0.05 m H = height of wat h = thickness of	Volume Calculatio H = h = ter col (m) sat. filterpack (m)	ns R = Bore Radi r = PVC radius	us (m)	PV = [(H x π x r ²) + 0.2 (h x π x (R ² - r ²))] x 1000 PV = = = = = = = 1 well volume = 3 well vols
mment	Duplicate sa	En En	ected, bottles	used, access, o bott (C	condition of head	lworks etc			Purge Volumes Casing Int. Dia (mm) 50 100 150 Vol (L/m of casing) 2.0 7.9 17.7 *Double for gravel pack

÷

GHD	ANAGEMENT NGINEERING NVIRONMENT	Purg	ing and	l Sampl	ing Reco	ord			Bore ID:	1
Client: Project: Proj. No.: Sampler:	Job Info Paraf; GME 33]9(JC/	rmation 610 551 110	Airport	Sample Met WQ Meter T Flow Cell: WLeve NAPL Chec	Sampling J hod: ype:F.l.a Y I N I Meter Type: k:	nformation		SWL Date Ref.datum Bore Depth Screer	Bore Information	n n
Time ()	Volume (L)	Temp (°C)	pH (pH units)	Elec.Cond	Dis.Oxygen	Ox-Red Pt. (± mV)	SWL (m)	()	Comment:	d dry2
Stable	when (3 readings):		+/- 0.05 pH	+/- 3%	+/- 10%	+/- 10 mV	stable	()	orour, turbianty, seament road, sneen, odour, now rate, prige	u ury :
		21.4	7.32	9.2	114.17.				clear lyellow Iow turbitity sediment at bottom of HI. No odour or sheen	*
Air bubbles Decontamin Was samplir COC update	F in vials? Y h ation as per C ng equipment d? Y J/N Fie	ield QA Chu Any viole GHD proced pre-cleane eld Filtered	ecks: ent reactions? lure? (Y / N d? Y / N ? Y / N	YIN	<i>Well</i> r = 0.025m R = 0.05 m H = height of wat h = thickness of	Volume Calculatio H = h = er col (m) sat. filterpack (m)	ns R = Bore Radi r = PVC radius	us s (m)	$PV = [(H \times \pi \times r^{2}) + 0.2 (h \times \pi \times (R^{2} - r^{2}))] \times 1000$ $PV = = = = = = = = = = = 1 \text{ well volume} = 3$	3 well vols
IX P	: Duplicate s	amples coll	ected, bottles	used, access, o	condition of head	works etc			Purge Volumes Casing Int. Dia (mm) 50 100 Vol (L/m of casing) 2.0 7.9 *Double for gravel pack	0 150 0 17.7

Client: Paraf	field Airpo	ert (AAL)			Job No:		331	19051		
Job Name: P	arafield /	Airport GW surv	vey & inv	estigation	Date: 13/	05/2019				
GHD Represe	entative:	Vera Biermann	r -		Arrival Ti	me: 10	IM	Departure	Time: 18	:06
Weather Con	ditions:	(Please circle)	Fine	Overcast	Light Rain	Heavy R	ain	Other Max	. 20°C	mostle
Works Being Undertaken:	GW ga	uging and sampl	ing (GME	:)						Sten
Personnel/Co	ontractor(s	s) Present (List a	II); Induc	ted into GHD	H&SP?	Inducted	Arriv	val Time	Departur	e Time
Photographs	Taken:	(Please circle)	(Yes) N	lo If Yes, I	ist below or	attach photo	o regist	er.		
Location	Time	Record of Activi	ties / Issu	es Encounter	ed / Discuss	ions with C	lient/Co	ontractors / S	Sketch / No	otes
GWP1-PFC	12,30 1	hows; veller	a stand	more not	in line 1	Relin	nd he	to la sign	La la	as in A
	13:00 4	north map; (weld i	w find a	ing other	well in	line	Vhelio	ad	1 145
P44	10.30	field duplica	6(5)	photos ; n	une of bus	e written	on Ca	sive & co	10/	
	-11.00	FDOI, SDOI			/			0		
GWP2-PFC	11.30	Field duplic	at (mly FDOI)	yellow	Stand pi	pe 1	location	doeni	4
	12.00	quite match	map	; could ,	not find	any of	6.	ell; F	DOZ	
P35	13.15	photo of 50k	le w/	gat' con	er viw	ell new	e on	;L		
	שרובו	N.I.I.I.I.	1	00 1	1		1			
GVVP3-PFC	14.70	FDDZ CD	les; y	ellow Sh	and pipe	; pho	ho v	Sample	is in the	aid
P34	16 72 1	1000 Ci	03	II. 1	. D1					
		allow Stan	pipo	an blud	in Ka.					
P43	15.20 :	29 Bradman Rd,	Parafield	Gdns SA 510	7, W road ve	rge Oh	to			
	-15.50-	Sopporte on	oval	side	1	pro	<i>a</i> -			
² 42	16.00 :	31 Mailey Cres, P	arafield (Gdns SA 5107	, NW road ve	erge pho	oto			
	16.19 4	>oppunite sid	o of Re	1		1				
236	6.22	l Barnes Cres, Pa	arafield G	dns SA 5107,	NW road ve	rge H	asi	it of you	1 pho	4
237	1111	MacKay Cros P	larafial C	dao 64 6107	N	. 11	10.1			r 1
	12.10			uns 3A 5107,	D	- Othe	250	DE	(d m)	rent
241	7.13	7 Woodfull St. P	arafield G	idns SA 5107	NWroad	ap 5La	nk	1(15	<u>n/</u>	
	7.400	hoto ul a	in a mora d			nge op	10200	5100 07	KA	
40	7.43 9	1 Bradman Rd. 0	Green Fie	lds SA 5107. I	W road ver	ae purb	m syl	1 5 0	n chi	6 1/0
a Notice of F	18,06	Variation, Variati	on Order	or Site Instru	ction Pequi	ad2 (Di		n m you	in sm	0
rovide Details	S:	. anaton, variati	on order	or one matru	chon Requir	eur (Ple	ease cir	cie) res	NO	
	tion _	> PFAS a	P.	·	1 -	Λ				
urther Inspec nd/or Testing equired on at	oove	****	nulys	s of w	rater s	ample			******	

Project number:	3319051	Sampler initials	VB
Client:	Parafield Airport (AAL)	PM initials	DV
Site location:	Parafield Airport, Parafield Gardens		lof 4

Well ID	P44		Depth to Groun (mBTOC)	dwater	3.8	32	
Date	13-05-2019		Depth to top of s (mBTOC)	sampler	4.5	-	
QC sample	FD, SDOI	3x PFAS Bolfles	Well depth (mB	TOC)	5,9	38	
In situ dow YSI Profemie	nul mult:	rs (collect post sa	mpling – ensure j	paramete	ers have	stabilised	l)
Time '	рН	Temp (C)	EC (uS/cm) SPL EC	Redox (mV)	DO (mg	/L)
11.00	7.07	21.3	3072 2851	145,	7-	0141	(4.7%
	Com	ments (odour, co	lour, turbidity,sh	een)			-V/
LNAPL Gheek	clear no c	rdow i ho	Hybrich by				
NA NO NAPL	not filtere	1, no bubble	s, no reaction	.			

Wall ID			· · · · · · · · · · · · · · · · · · ·		·		
	GWP2-	PFC	Depth to Groun (mBTOC)	ıdwater	3.4	17	
Date	13-05-2019		Depth to top of (mBTOC)	sampler	4,5		
QC sample	FD02, S	PFAS bothle	Well depth (mE	BTOC)	6.82	$\overline{\mathcal{O}}$	
In situ dov	wnhole paramete	ers (collect post sa	ampling – ensure	paramete	ers have	stabilis	ed)
Time	рН	Temp (C)	EC (uS/cm) SPC EC	Redox (mV)	DO (n	ıg/L)
12.00 pm	6.94	21.3	2041 1895	154.5	>	0,13	(1,52)
•	Con	nments (odour, co	lour, turbidity,sl	ieen)		1	
LNAPL Check Y 🗆	Silt at bolt	m of well			hof	filts	es la
NX Ma Manl	Slight Harlin	dity, no out	our, no shee	'n	h	o bubl	les
100 10000	years s	Tund pripe				· - · ~ (· Vh Vh
Well ID	GWP1-P	FC	Depth to Groun (mBTOC)	dwater	5.6	02	
Date	13-05-2019		Depth to top of (mBTOC)	sampler	6.0		
QC sample			Well depth (mB	TOC)	9-9	20.0	7.935
In situ dow	nhole paramete	rs (collect post sa	mpling – ensure	paramete	rs have	stabilise	ed)
Time	рН	Temp (C)	EC (uS/cm)	Redox (1	mV)	DO (m	g/L)
12.55	6.77	20,2	4848 4417	161.0	د	5,01	(56.2)
	Com	ments (odour, col	lour, turbidity,sh	een)		•	·······
LNAPL Check Y 🗆	No Shen, 1	no order. , ho	turbidity	bolton (of rel	l silti	7
NR NG MAPL	Yellow sto	undp:pe	not hills	red, his	5 5-56	n, ho	Nouhen

Project number:	3319051	Sampler initials	VB
Client:	Parafield Airport (AAL)	PM initials	DV
Site location:	Parafield Airport, Parafield Gardens		20\$4

Well ID	P35		Depth to Group	ndwater	3	718
Date	13-05-2019		Depth to top of	sampler	4	(50)
QC sample	MA 1	APAS 50Hle	Well depth (ml	BTOC)	 \$	57.127
In situ do	wnhole paramet	ers (collect post s	ampling – ensure	paramete	rs have	stabilised)
Time	pH	Temp (C)	EC (uS/cm)	Redox (mV)	DO (mg/L)
13,35	6.89	21.5	2643 2463	159,	6	(-1,7%) 0
	Сог	nments (odour, co	olour, turbidity,s	heen)		
LNAPL Check	No odvur,	no shear,	no turbio	lity		
NONAM	No Subbles	, ho reach on	, not filtre	rd		
Well ID	GW/P3-P	FC	Depth to Groun	ıdwater	2 %	219
Date	13-05-2019	7 PFAS LILO	(mBTOC) Depth to top of (mPTOC)	sampler	 	5
QC sample	MA FDO	3, SP03	Well depth (mB	TOC)	<u>5</u> 2	75
In situ dov	wnhole paramete	ers (collect post sa	mpling – ensure	paramete	rs have	stabilised)
Time	рН	Temp (C)	EC (uS/cm)	Redox (r	nV)	DO (mg/L)
14.15	6.91	22.0	3679 3472	148,	0	1.81 (20.9%)
	Con	ıments (odour, co	lour, turbidity,sl	ieen)		/
LNAPL Check Y □ NÃI No NA9L	Vellors Star No bubbles	, us reach	or / runweig	Ni slip tores	she it tu (Sil	en 1 ho odou shidify
Well ID	P34		Depth to Groun (mBTOC)	dwater	2.9	115
Date	13-05-2019		Depth to top of s (mBTOC)	sampler	4,5	5
QC sample	MA		Well depth (mB	TOC)	5.8	52.
In situ dow	nhole parameter	rs (collect post sa	mpling – ensure j	parameter	s have	stabilised)
Time	рН	Temp (C)	EC (uS/cm) Sρς Ές	Redox (n	ıV)	DO (mg/L)
14.45	7.02	22.0	4137 3903	147.8	3	2.62 (303 x)
	Com	ments (odour, col	our, turbidity,sh	een)	k	
LNAPL Check Y 🗆	Silty boltom (Dusth of 1P somb) daire L. P	Yellow La	Shin	dpipe
NA	0.00	- porn ma	rung rung	0		

Project number:	3319051	Sampler initials	VB
Client:	Parafield Airport (AAL)	PM initials	DV
Site location:	Parafield Airport, Parafield Gardens		3 of 4

Well ID	P43		Depth to Grou (mBTOC)	ndwater 4,	007
Date	13-05-2019		Depth to top of (mBTOC)	f sampler 4	.1
QC sample	NIA		Well depth (m)	втос) 4	.86
In situ do	wnhole paramet	ers (collect post	sampling – ensure	e parameters hav	e stabilised)
Time	рН	Temp (C)	EC (uS/cm)	Redox (mV)	DO (mg/L)
15.45	A-T	2215	4542 4308	1563	7248 1865
	Cor	nments (odour,	colour, turbidity,s	heen)	
LNAPL Check	No orlow,	no glien	high furbic	Lity	
NR 16 MAR	Gutic Opport	nte 29 Bra	dwen Rel (a	rul sido)	
INO INTRIL	no leubbl	es, ho year	hon, not f	ilbed	
Well ID	P42		Depth to Groun (mBTOC)	ndwater 3,	601
Date	13-05-2019		Depth to top of (mBTOC)	sampler 4.5	5
QC sample	MA		Well depth (mI	втос) 5.0	130
In situ do	wnhole paramete	ers (collect post s	sampling – ensure	parameters hav	e stabilised)
Time	pH	Temp (C)	EC (uS/cm) SPC EC	Redox (mV)	DO (mg/L)
16.15	7.16	23,3	2093 2028	142,1	2.45 (28.74
	Con	nments (odour, o	colour, turbidity,s	heen)	
LNAPL Check Y N N N N N N N N N N N N N	Silly bottom No odou not fill	well h ~, no shee bey, no s	nochium-high n nobbles, us)	farbidity reaching	opposite Noad Side
Well ID	P36		Depth to Groun (mBTOC)	dwater 3 i	220
Date	13-05-2019		Depth to top of (mBTOC)	sampler 40	5
QC sample	NA		Well depth (mB	STOC) 6	222
In situ dov	vnhole paramete	rs (collect post s	ampling – ensure	parameters have	e stabilised)
ſime	рН	Temp (C)	EC (uS/cm)	Redox (mV)	DO (mg/L)
16.38	6.93	23,4	4332 4202	103,5	0,19 (2.34
N7.1 N7	Com	ments (odour, c	olour, turbidity,sh	ieen)	
LNAPL Check	opposite Roa	I side	el a		
XX	not filst	bed in	realized	he bull	les .

1	-	7	Т	т	-
1	C.	1		1	Р.

Project number:	3319051	Sampler	VB	
Client:	Parafield Airport (AAL)	PM initials	DV	
Site location:	Parafield Airport, Parafield Gardens		1. (1	
			401	

P3	7	Depth to Groun (mBTOC)	ndwater 2	915
13-05-2019		Depth to top of (mBTOC)	sampler 4	5
KAA K	R	Well depth (mE	955	
wnhole parame	ters (collect post	sampling – ensure	parameters ha	ve stabilised)
pH Temp (C)		EC (uS/cm)	Redox (mV)	DO (mg/L)
6.96	24.2	4407 4340	116.7	0,95 (114
Co	mments (odour,	colour, turbidity,sh	leen)	10 (117)
Light fur	bidity op	ponte 18		
1 11	a 1		100	
	P 3 13-05-2019 MAA & wnhole parame pH 6,96 Co Light fur	P37 13-05-2019 MAARS ownhole parameters (collect post pH Temp (C) 6.96 Z4.2 Comments (odour, Light furbidity of	P37Depth to Groun (mBTOC)13-05-2019Depth to top of (mBTOC)MAARWell depth (mE ownhole parameters (collect post sampling – ensurepHTemp (C)EC (uS/cm) SPC6.96Z4.244074340 Comments (odour, colour, turbidity,st Light furbridity opente 18	P37Depth to Groundwater (mBTOC)213-05-2019Depth to top of sampler (mBTOC)4MAARWell depth (mBTOC)5ownhole parameters (collect post sampling – ensure parameters have pHTemp (C)EC (uS/cm) spcRedox (mV) spc06.9624.244074340116.7Comments (odour, colour, turbidity, sheen)Light further further for the further further for the further further for the

Well ID	DLI		Depth to Grou	ndwatar						
P4	P41		(mBTOC)	nuwater 3	,340					
Date	13-05-2019		Depth to top of sampler (mBTOC)							
QC sample			Well depth (m)	BTOC)	000					
In situ do	wnhole parame	ters (collect post	sampling – ensure	narameters hav	1 880					
Time	TY		- Pring onsure	par ameters hav	e stabilised)					
Time	рН	Temp (C)	EC (uS/cm)	Redox (mV)	DO (mg/L).					
17:32	7.01	23,1	3617 3482	3617 3482 121.9						
	Co	mments (odour,	colour, turbidity,s	heen)	- 1-1					
LNAPL Check	opposite	17 Woodyn	lls	silly vel	e solton					
NO NAPL	No v	reaching the	nde hybler us	high tarkid	ity no orlo					
Well ID		10-01-00	3.00 - 5,00	filled 1	to shen					
P	P40		Depth to Groun (mBTOC)	dwater 2.9	53					
Date	13-05-2019	1	Depth to top of (mBTOC)	sampler						
QC sample			Well depth (mB	TOC) 5.9	20					
In situ dov	wnhole paramete	ers (collect post s	ampling – ensure	Darameters have	stabilized)					
Time	nH	T			stabiliseu)					
	pm	Temp (C)	EC (uS/cm)	Redox (mV)	DO (mg/L)					
18.00	6.98	22,4	4144 3939	85,4	0,0					
	Con	ments (odour, co	olour, turbidity,sh	een)						
NAPL Check	On East sill rection to	e in Road r	eserve of Park	1 freen Ship	0150					
	not filterey	1 ho Rh, no	Libbles	101	20					

.....

Appendix C – Registered Bore Search

Circle Centre -34.79382,138.624375, Radius 2.000km

CC

Except where otherwise noted this work is licensed under a Creative Commons Attribution 3.0 Australia License © Crown in right of the State of South Australia

Groundwater Data Report

Circle Centre -34.79382,138.624375, Radius 2.000km

Unit No	Obs No	Date	Cased To	Max Depth	Latest	SWL (m)	SWL Date	Yield	Yield Date	TDS (mg/L)	TDS Date	Purpose	Aquifer	Status	Permit No	SWL Status	Salinity
6620 2201	VAT017	01/00/10/1	(m)	(m)	Depth (m)	22.0	11/01/1075	(L/sec)	14/04/1007	005	15/07/1040	0.00	Tames (T1)				Status
6628-3301	YATU17	01/06/1941	110.95	124.97	124.97	32.8	11/01/19/5	7.58	14/04/1967	805	15/07/1949	OBS	TOMW(T1)				
6628-5151				32.31	32.31			0.63	00/04/4050	1690	13/04/1964		Qpan				
6628-5152				27.43	27.43			5.68	09/04/1959	1443	09/04/1959		Qpan				
6628-5153		a c / a a / a a . =		20.73	20.73		a c / a c / a c . =		0.00/10.17	1000	10/00/1000	INV	Qpan (= 1)	ABD			
6628-5154		26/09/1947		152.4	152.4	1.22	26/09/1947	8.84	26/09/1947	1386	13/02/1961	IRR	Tomw(11)				
6628-5155			119.79	119.79	-	16.2	19/03/1974	-		2111	22/02/1930	OBS	Tomw(T2)				
6628-5156				15.95	15.95	4.27	07/03/1969	11.37	26/01/1933	1900	07/02/1969	IRR	Qpah				
6628-5157		09/05/1955	127.1	151.18		0	09/05/1955	5.81	09/05/1955	959	09/05/1955	IRR	Tomw(T1)	ABD	95316		
6628-5158				32.92	32.92			1.26		1002	02/12/1940	DOM	Qpah				
6628-5159				6.4	6.4	6.1	10/03/1934	0.63	10/03/1934	2427	10/03/1934	INV	Qpah				
6628-5162				15.85	10.67	2.74	06/02/1969			2251	05/02/1969	STK	Qpah	OPR			
6628-5163	YAT023	26/05/1969	60.43	64.01	64.01	10.64	28/02/1989	0.88	02/05/1969	539	20/08/1976	OBS	Qpah(Q4)	UKN		Н	Н
6628-5164				108.89	0	3.66	08/04/1983	6.31	08/04/1983	3423	15/01/1969	DOM	Tomw(T1)	BKF	9735		
6628-5165				7.01	7.01	4.57		0.51				INV	Qpah				
6628-5166				22.86	22.86	7.62	20/01/1940	0.38	20/01/1940	1444	20/01/1940	INV	Qpah				
6628-5167		01/01/1958		141.73	141.73	12.24	08/03/1967	15.15	08/03/1967	1218	01/05/2016	IRR	Tomw(T1)			Ν	С
6628-5168		01/01/1960		81.38	0			0.63	01/01/1969	617	01/03/2001	IRR	Qpah(Q4)	BKF	66173		
6628-5194				9.14	9.14	6.4							Qpah				
6628-5195				7.62	7.62	6.4							Qpah				
6628-5196				6.1	6.1	5.79	11/05/1934			2435	11/05/1934		Qpah				
6628-5197		02/03/1951	117.81	132.59	132.59	12.19	05/02/1951	3.79	01/01/1969	972	11/10/1967	IRR	Tomw(T1)				
6628-5198				21.34	21.34								Qpah	ABD			
6628-5199				15.85	15.85			1.26	09/05/1955	1965	09/05/1955	IRR	Qpah				
6628-5200				30.5	30.5			1.89	09/05/1955	890	09/05/1955	IRR	Qpah				
6628-5201				28.65	28.65							IRR	Qpah				
6628-5202				39.62	39.62			1.01	01/01/1954	596	03/12/1954	DOM	Qpah				
6628-5203																	
6628-5204				7.01	7.01			1		2137			Qpah				
6628-5205		01/01/1962	18.29	36.58				8	07/02/1969	2471	06/03/1969	IRR	Qpah				
6628-5206				24.38	24.38			5				IRR	Qpah				
6628-5207				24.38	24.38			5				IRR	Qpah				
6628-5208		01/01/1948		237.74	0								1	BKF	101335		
6628-5209		11/10/1968		6.71	6.71	1						INV	1				
6628-5210	YAT019	01/04/1969	36.58	45.72	45.72	3.09	13/02/1979	1	20/05/1976	545	20/08/1976	INV	Qpah(O2)	UKN		н	Н
6628-5211		11/10/1968		8.08	8.08	3.45	11/10/1968		3,00,00,00			INV	Opah				
6628-5212		11/10/1968		5.79	5.79	2.39	11/10/1968					INV	Qpah				
6628-5213		11/10/1968		5.18	5.18	3.45	11/10/1968		1			INV	Opah				
0020 3213		1 / / / / / 00		5.10	5.10	5.45	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						apan				

Unit No	Obs No	Date	Cased To	Max Depth	Latest	SWL (m)	SWL Date	Yield	Yield Date	TDS (mg/L)	TDS Date	Purpose	Aquifer	Status	Permit No	SWL Status	Salinity
			(m)	(m)	Depth (m)			(L/sec)									Status
6628-5214		11/10/1968		5.79	5.79	5.59	11/10/1968					INV	Qpah				
6628-5215				12.19	12.19	6.71	11/04/1934			1165	11/04/1934		Qpah				
6628-5236	YAT025	19/08/1947	125.88	156.97	156.97	3.27	24/05/1974	12.63	19/08/1947	716	28/02/1974	IRR	Tomw(T1)	OPR		Н	N
6628-5237		01/01/1969		7.62	7.62	4.57	26/02/1969			2530	25/02/1969		Qpah				
6628-5238		25/08/1954		184.4	0			7.58	25/08/1954	1552	19/11/1996	IRR	Tomw(T2)	BKF			
6628-5239												DRN		OPR			
6628-5240		23/03/1950		45.57	45.57							EXP					
6628-5241	YAT097	24/06/1977		175	0	14.82	05/03/1999	4	24/06/1977	1467	24/06/1977	OBS	Tomw(T1)	BKF	49416	Н	N
6628-5243		01/01/1934		6.1	6.1					3084	16/04/1934		Qpah				
6628-5244		02/11/1935	17.88	21.03	21.03							DRN		OPR			
6628-5248				7.32	7.32			0.63		429			Qpah	ABD			
6628-5249				6.86	6.86			2.53		1709			Qpah				
6628-6933				4.88	4.88	2.74	09/05/1934	0.38	09/05/1934	2144	09/05/1934		Qpah				
6628-6934				2.74	2.74	2.44							Qpah				
6628-6935				6.1	6.1	3.05				3517			Qpah				
6628-6936				2.74	2.74	2.44							Qpah				
6628-6937		18/10/1966		12.22	12.22									UKN			
6628-6938		14/11/1969		12.19	12.19									UKN			
6628-6939		14/11/1969		12.19	12.19									UKN			
6628-6940		14/11/1969		10.97	10.97									UKN			
6628-6941		14/11/1969		8.84	8.84									UKN			
6628-6942		14/11/1969		9.14	9.14									UKN			
6628-10969	YAT098	15/05/1979		81	0	4.92	21/09/1991			661	15/05/1979	OBS	Qpah	BKF	49417	Н	N
6628-14630		31/01/1985		10.5	10.5							INV		ABD			
6628-17013				2.5	2.5												
6628-18143		30/11/1995	116	124	124			15	30/11/1995	1222	12/12/2001	IRR	Tomw(T1)	OPR	35648		
6628-18546		15/06/1997	164.5	186.5	186.5	7.74	04/12/2001	8	15/06/1997	1951	19/11/1999	MAR	Tomw(T2)	NIU	41411		
6628-18936		16/10/1997	5.6	5.6	5.6	1.99	16/10/1997					INV	Qpah		42925		
6628-18937		16/10/1997		5.6	0	2	16/10/1997					INV	Qpah	BKF	212471		
6628-18938		16/10/1997	5.6	5.6	5.6	2.04	16/10/1997					INV	Qpah		42937		
6628-20328	YAT129	15/09/2000	163	212	191	11.29	05/02/2019	10	15/09/2000	1939	05/05/2005	INV	Tomw(T2)	OPQ	53463	С	N
6628-20329	YAT130	21/09/2000	128	145	145	4.52	05/02/2019	10	21/09/2000	1228	14/05/2001	INV	Tomw(T1)	NIU	53576	С	Н
6628-20614		10/10/1998	30	30	30	13	10/10/1998	0.5	10/10/1998	12861	10/10/1998	IRR	Qpah ,		46549		
6628-20739		18/12/2001	20.5	20.5	20.5	2.71	18/12/2001			2545	04/09/2008	MON	Qpah		56858		
6628-20741		06/12/2001	173.7	216	216	4.54	06/12/2001	6	06/12/2001	175	04/09/2008	OBS	Tomw(T2)		56856		
6628-20742		11/12/2001	126.6	150	150	7	11/12/2001	6	11/12/2001	2290	04/09/2008	OBS	Tomw(T1)		56857		
6628-20743		12/12/2001		198	198	4.5	01/03/2002	5	12/12/2001	187	20/04/2004	MAR	Tomw(T2)	OPR	56888		
6628-20943		02/05/2002	171	180	180	_		-	, ,	2008	30/05/2002	MAR	Tomw(T2)	OPR	56887		
6628-21082		18/12/2002	0.5	6	6							INV	Opah		60598		
6628-21114		12/02/2003	3	4	4	2.3	12/02/2003	0	12/02/2003	3782	04/09/2008	OBS	Qpah		61088		
6628-21115		12/02/2003	3	4	4	2.4	12/02/2003	-	_,,000	827	04/09/2008	OBS	Opah		61089		
6628-21116		13/02/2003	21	24	24	2.4	13/02/2003	1	13/02/2003	2014	12/07/2006	OBS	Opah		61090		
0020-21110		122/02/2003	∠ ⊥	24	24	2.4	15/02/2003	T	13/02/2003	2014	12/0//2006	003	Quail		05020		
Unit No	Obs No	Date	Cased To	Max Depth	Latest	SWL (m)	SWL Date	Yield	Yield Date	TDS (mg/L)	TDS Date	Purpose	Aquifer	Status	Permit No	SWL Status	Salinity
------------	--------	------------	----------	-----------	-----------	---------	------------	---------	------------	------------	------------	---------	----------	--------	-----------	------------	----------
		/ /	(m)	(m)	Depth (m)			(L/sec)			/ /						Status
6628-21117		14/02/2003	3	4	4					1457	04/09/2008	OBS	Qpah		61123		
6628-21118		14/02/2003		22	22	2.3	14/02/2003			1990	04/09/2008	OBS	Qpah		61124		
6628-21213		06/02/2003	2.3	5.3	5.3	3.2	06/02/2003					MON	Qpah		61145		
6628-21214		06/02/2003	2.4	5.3	5.3	3.4	06/02/2003					MON	Qpah		61146		
6628-21215		06/02/2003	2.9	5.9	5.9	3.7	06/02/2003					MON	Qpah		61147		
6628-21495		11/07/2003	0.5	3.5	3.5							MON	Qpah		62716		
6628-21984		18/09/2004	162	222	222	-4	18/09/2004	90	18/09/2004	477	18/09/2004	MAR	Tomw(T2)	NIU	64633		
6628-22405		12/05/2004		8.6	8.6								Qpah		64034		
6628-22406		13/05/2004		8	8								Qpah		64035		
6628-22407		13/05/2004		7.5	7.5								Qpah		64036		
6628-22408		13/05/2004		8.5	8.5								Qpah		64037		
6628-22409		22/07/2004		9	9								Qpah		64038		
6628-22532		12/05/2006	164	180	180	4	12/05/2006	12.5	12/05/2006	2075	22/06/2006	MAR	Tomw(T2)	OPR	117712		
6628-22533		29/05/2006	168	183	183	4.4	29/05/2006	12.5	29/05/2006	2097	27/06/2006	MAR	Tomw(T2)	OPQ	119379		
6628-22535		22/05/2006	165	182	182	5	22/05/2006	12.5	22/05/2006	2097	26/06/2006	MAR	Tomw(T2)	OPQ	117711		
6628-22608				198.25	0									BKF	111057		
6628-22617		29/08/2006	3	6	6	4.57	29/08/2006					INV	Qpah		121624		
6628-22762					0									BKF			
6628-22789		20/12/2006	3	6	6	3.7	20/12/2006					INV	Qpah		125466		
6628-22790		19/12/2006	3	6	6	3.9	19/12/2006					INV	Qpah		125465		
6628-22791		19/12/2006	4.75	7.8	7.8	4	19/12/2006					INV	Qpah		125464		
6628-22792		20/12/2006	3	6	6	4	20/12/2006					INV	Qpah		125463		
6628-22793		19/12/2006	2.5	7	7	3.9	19/12/2006					INV	Qpah		125462		
6628-22923		05/04/2007	3	7	7	5.3	05/04/2007					INV	Qpah		129181		
6628-22924		05/04/2007	3	7	7	5.3	05/04/2007					INV	Qpah		129182		
6628-22925		05/04/2007	3	7	7	5.3	05/04/2007					INV	Qpah		129183		
6628-22926		06/04/2007	3	7	7	5.3	06/04/2007					INV	Qpah		129184		
6628-22927		07/04/2007	3	7	7	5.3	07/04/2007					INV	Qpah		129185		
6628-22928		08/04/2007	3	7	7	5.3	08/04/2007					INV	Qpah		129186		
6628-23045		05/02/2007	165	184	184	10.5	05/02/2007	18	05/02/2007	1917	05/02/2007	INV	Tomw(T2)	OPR	126355		
6628-23047		15/01/2007	165	184	184	10.5	15/01/2007	18	15/01/2007	1883	15/01/2007	INV	Tomw(T2)	OPR	126353		
6628-23053		22/01/2007	165	184	184	10.5	22/01/2007	18	22/01/2007	1917	21/01/2007	MAR	Tomw(T2)	OPR	126354		
6628-23489		08/02/2008	117	132	132	11	08/02/2008	12	08/02/2008	2596	21/02/2008		Tomw(T1)		142602		
6628-23706		16/04/2008	3	7	7	5.4	16/04/2008					INV	Qpah		144933		
6628-23707		16/04/2008	3	7	7							INV	Qpah		144932		
6628-23708		16/04/2008	3	7	7	5.4	16/04/2008					INV	Qpah		144931		
6628-23709		16/04/2008	3	7	7	5.3	16/04/2008					INV	Qpah		144930		
6628-24537		25/07/2008	167.5	171.5	171.5	3	25/07/2008	3	25/07/2008	338	25/07/2008	MAR	Tomw(T2)		149448		
6628-24538		31/07/2008	168	171	171	3.8	31/07/2008	2	31/07/2008	171	30/07/2008	MAR	Tomw(T2)		149450		
6628-24539		18/07/2008	209	228	214	4.1	18/07/2008	1.5	18/07/2008	2352	18/07/2008	MAR	Tomw(T2)		149449		
6628-25261		13/10/2009	3	8	8	7.35	13/10/2009					INV	Qpah		183010		
6628-25262		13/10/2009	3	8	8	7.58	13/10/2009					INV	Qpah		183011		

Unit No	Obs No	Date	Cased To	Max Depth	Latest	SWL (m)	SWL Date	Yield	Yield Date	TDS (mg/L)	TDS Date	Purpose	Aquifer	Status	Permit No	SWL Status	Salinity
			(m)	(m)	Depth (m)			(L/sec)									Status
6628-25263		13/10/2009	3	8	8							INV	Qpah		183012		ļ
6628-25264		14/10/2009	3	9	9	8.27	14/10/2009					INV	Qpah		183013		ļ
6628-25265		14/10/2009	4	10	10	8.79	14/10/2009					INV	Qpah		183018		
6628-25421		15/10/2009	10	10	10	8.73	15/10/2009					INV	Qpah		183015		
6628-25422		15/10/2009	3.8	9.8	9.8	9.1	15/10/2009					INV	Qpah		183016		
6628-25423		16/10/2009	10	10	10							INV	Qpah		183017		
6628-25434		16/09/2010	174	210	210	1	16/09/2010			1647	16/09/2010	MAR	Tomw(T2)	OPR	188053		
6628-25583		11/10/2010	11.5	16	16	10.5	11/10/2010					INV	Qpah		195824		
6628-25590		15/10/2010	10.5	15	15	10	15/10/2010					INV	Qpah		195831		
6628-25591		15/10/2010	10.5	15.65	15.65	10.8	15/10/2010					INV	Qpah		195832		
6628-25592		18/10/2010	12.5	17	17	12.7	18/10/2010					INV	Qpah		195833		
6628-27347			174	210	210	1	03/06/2014	80	03/06/2014	1541	03/06/2014	MAR	Tomw(T2)	OPR	231390	Ν	С
6628-28347		13/10/2015	3.5	8	8	5.3	13/10/2015					INV	Qpah		253332		
6628-28348		13/10/2015	3.5	8	8	5.6	13/10/2015					INV	Qpah		253331		
6628-28349		13/10/2015	3.5	8	8	5	13/10/2015					INV	Qpah		253333		
6628-28350		13/10/2015	3.5	8	8	5.2	13/10/2015					INV	Qpah		253330		
6628-28405		23/05/2016	3.5	9.5	9.5	6.5	23/05/2016					INV	Qpah		262884		
6628-28407		23/05/2016	3.5	6.5	6.5	3.8	23/05/2016					INV	Qpah		262886		
6628-28411		23/05/2016	7.5	7.5	7.5	2.9	23/05/2016					INV	Qpah		262885		
6628-28588		10/08/2016	3.5	8	8	4.9	10/08/2016								271494		
6628-28589		10/08/2016	8	8	8	5	10/08/2016					INV			271493		
6628-28597		09/08/2016	3	6	6	3	09/08/2016					INV			271484		
6628-28598		11/08/2016	7	10	10	8	11/08/2016					INV			271490		
6628-28599		09/08/2016	7	10	10	8.5	09/08/2016					INV			271491		
6628-28600		08/08/2016	4	4	4	1	08/08/2016					INV			271485		
6628-28601		08/08/2016	3	6	6	2	08/08/2016					INV			271483		
6628-28602		08/08/2016	2.7	2.7	2.7	0.7	08/08/2016					INV			271486		
6628-28603		09/08/2016	4	4	4	1.5	09/08/2016					INV			271487		
6628-28687		16/06/2016	3.5	8	8	4.9	16/06/2016					INV			264406		
6628-28688		16/06/2016	3.5	8	8	5.14	16/06/2016								264408		
6628-28689		15/06/2016	4.2	8.7	8.7	5	15/06/2016					INV			262182		
6628-28690		17/06/2016	3.5	8	8	5.01	17/06/2016								262183		·
6628-28691		17/06/2016	4.5	9	9	4.8	17/06/2016					INV			262184		
6628-28867		30/05/2017	3.5	8	8	5.4	30/05/2017					INV			281845		
6628-29388		29/11/2017	1.5	5.7	5.7	2	29/11/2017					INV			291645		
6628-29389		28/11/2017	2.5	5.7	5.7	1.45	28/11/2017					INV			291646		
6628-29390		28/11/2017	2	5.2	5.2	1.4	28/11/2017					INV			291647		·
6628-29391		,	5	5.2	5.2	1.4	28/11/2017					INV			291648		
6628-29392		28/11/2017	2	5	5	2.5	28/11/2017					INV			291649		
6628-29393		28/11/2017	2	5	5	2.6	28/11/2017					INV			291650		
6628-29394		28/11/2017	1.5	4.5	4.5	1.5	28/11/2017					INV			291651		
6628-29395		29/11/2017	2	5	5	3.9	29/11/2017					INV			291652		

Unit No	Obs No	Date	Cased To	Max Depth	Latest	SWL (m)	SWL Date	Yield	Yield Date	TDS (mg/L)	TDS Date	Purpose	Aquifer	Status	Permit No	SWL Status	Salinity
			(m)	(m)	Depth (m)			(L/sec)									Status
6628-29396		29/11/2017	2	5.2	5.2	1.9	29/11/2017					INV			291653		
6628-29397		29/11/2017	2	5	5	1.65	29/11/2017					INV			291654		
6628-29398		29/11/2017	2	5	5	1.9	29/11/2017					INV			291655		
6628-29438		16/04/2018	2.5	5.5	5.5							INV			303631		
6628-29905		29/11/2018		5.5	5.5		29/11/2018					ENV		DRY	338170		
6628-29945		28/11/2018		6	6		28/11/2018					ENV		DRY	338176		
6628-29946		28/11/2018		6	6		28/11/2018					ENV		DRY	338175		
6628-29947		28/11/2018		6	6		28/11/2018					ENV		DRY	338173		
6628-29948		28/11/2018		6	6		28/11/2018					ENV		DRY	338174		
6628-29949		29/11/2018		6	6		29/11/2018					ENV		DRY	338172		

173 records

Except where otherwise noted this work is licensed under a Creative Commons Attribution 3.0 Australia License © Crown in right of the State of South Australia

Appendix D – Well Permits

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338170
Expiry Date:	26/11/2019

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6156/211 Allotment 17 in Filed Plan 114106 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

omknight

Date: 26/11/2018

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act* 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338172
Expiry Date:	26/11/2019

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6156/211 Allotment 16 in Filed Plan 114106 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004

pursuant to section 135 of the Natural Resources Management Act 200 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Omknickt

Date: 26/11/2018

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act 2004* WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338175
Expiry Date:	26/11/2019

Permission is hereby granted to: GHD PTY LTD

: GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6000/122 Allotment 907 in Deposited Plan 75744 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

it is which the beauty

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act 2004* WELL PERMIT

- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 26/11/2018

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Smithialt

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act* 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338176
Expiry Date:	26/11/2019

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5919/69 Allotment 113 in Deposited Plan 64973 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Section of the section

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act 2004* WELL PERMIT

- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 26/11/2018

mkright

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Page 3 of 3

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338173
Expiry Date:	26/11/2019

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5585/896 Allotment 493 in Deposited Plan 7818 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 26/11/2018

Sonya Knight Water Licensing Officer

Delegate of Minister for Environment and Water

Smkright

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338174
Expiry Date:	26/11/2019

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5901/359 Allotment 1 in Deposited Plan 62381 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in the Quaternary aquifer Q1.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 26/11/2018

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Omkhicle

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338997
Expiry Date:	11/01/2020

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

Sale States and the

that of the first state of the second state of the second state of the second state of the second state of the

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5120/565 Allotment 8 in Deposited Plan 36686 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

in the second second second

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in either the Quaternary aquifer Q1 or the Quaternary aquifer Q2. If completed in the Quaternary aquifer Q2 the aquifer above is to be cased off and pressure cemented.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known nearby soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well(s).
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act 2004* WELL PERMIT

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

omknicht

Date: 11/01/2019

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338998
Expiry Date:	11/01/2020

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5245/443 Allotment 204 in Deposited Plan 7815 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

and store for a first state of the state of

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in either the Quaternary aquifer Q1 or the Quaternary aquifer Q2. If completed in the Quaternary aquifer Q2 the aquifer above is to be cased off and pressure cemented.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known nearby soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well(s).
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and guantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Omknicht

Date: 11/01/2019

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act* 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	338999	
Expiry Date:	11/01/2020	

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5376/429 Allotment 355 in Deposited Plan 7818 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- 13. A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in either the Quaternary aquifer Q1 or the Quaternary aquifer Q2. If completed in the Quaternary aquifer Q2 the aquifer above is to be cased off and pressure cemented.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known nearby soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well(s).
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

DMKhicle

Date: 11/01/2019

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY

pursuant to section 135 of the *Natural Resources Management Act* 2004 WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	339000
Expiry Date:	11/01/2020

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 5587/407 Allotment 409 in Deposited Plan 7819 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in either the Quaternary aquifer Q1 or the Quaternary aquifer Q2. If completed in the Quaternary aquifer Q2 the aquifer above is to be cased off and pressure cemented.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known nearby soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well(s).
- 19. This permit authorises the construction of a well on the portion of road adjacent to the land parcel described above.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

DMKhickt

Date: 11/01/2019

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004

WELL PERMIT

Subject to full compliance with all the procedures, specifications and limitations contained or referred to, in the conditions set out below,

Permit No:	339012
Expiry Date:	11/01/2020

Permission is hereby granted to:

GHD PTY LTD LEVEL 4, 211 VICTORIA SQUARE ADELAIDE SA 5000 ACN 008 488 373

To undertake the following water affecting activity:

Activity: Well Construction

Well Use: Investigation

CONDITIONS:

1. The activity authorised by this permit must only be undertaken on the land described below:

CT 6156/211 Allotment 15 in Filed Plan 114106 Hundred of Yatala

- 2. Well Construction must be in accordance with the General Specification for Well Construction, Modification and Abandonment in South Australia (or any subsequent or related policy), as provided by the relevant authority
- 3. If the well is considered unsatisfactory, it may be abandoned and a replacement well may then be constructed provided that the abandoned well is backfilled prior to the drill rig leaving the site.
- 4. The equipment, materials and methods used in drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, shall not adversely affect the quality of an underground water resource.
- 5. Water samples are required from all wells drilled in respect of this permit.
- 6. Aquifers shall be protected during drilling, plugging, backfilling or sealing of a well, or the replacement or alteration of the casing, lining or screen of a well, to prevent adverse impacts upon the integrity of the aquifer.
- 7. Strata samples are not required.
- 8. This work may be subject to inspection by the Department's Drilling Inspectors.
- 9. The licensed well driller must forward with his report a plan obtained from the permit holder, who must mark thereon the location of all wells drilled in respect of this permit.

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 10. If this well is incidental/ancillary to mining operations authorised under the Mining Act 1971, or a regulated activity under the Petroleum and Geothermal Energy Act 2000 (Acts), the well must be decommissioned (as outlined in the Minimum Construction Requirements for Water Bores in Australia Third Edition) prior to the relinquishment of the licence or lease under the associated Acts, unless alternative formal arrangements can be made with the owner or occupier of the land on which the well is located subject to approval by the relevant Minister or the Minister's agent.
- 11. All wells must be drilled vertical unless written permission is obtained from the Minister.
- 12. All groundwater extracted during sampling and/or purging must be contained and disposed of in an appropriate manner to minimise risk to health and the environment.
- A lithological log is to be submitted with the drillers well construction report from all wells drilled in respect of this permit in accordance with National Environmental Protection (assessment of Site Contamination) measure 1999.
- 14. Wells are to be backfilled when no longer required for ongoing monitoring and investigation purposes.
- 15. The well is to be completed only in either the Quaternary aquifer Q1 or the Quaternary aquifer Q2. If completed in the Quaternary aquifer Q2 the aquifer above is to be cased off and pressure cemented.
- 16. Where a well passes or will pass through two or more aquifers, an impervious seal shall be made and maintained between the aquifers to prevent leakage between the aquifers.
- 17. A well shall only be drilled where it will not cause, or will not be likely to cause, salt mobilisation or a rising water table.
- 18. Due to known soil/groundwater contamination in the sediments and aquifers above, caution should be taken in the drilling and cementing of this well.

- 1. It is recommended that all drilling equipment be decontaminated prior to construction of a new well or rehabilitation of an existing well to prevent the introduction or transfer of iron bacteria. Similar precautions should also be taken with pump installation equipment.
- 2. Under section 202(1)(b)(ii) of the Natural Resources Management Act 2004, you have a right of appeal to the Environment, Resources and Development Court against the imposition of any condition on this permit. The appeal must be instituted within six weeks of the date of permit issue. The appeal must also be served upon this department within that time.
- 3. This permit is not transferable.
- 4. This well construction permit is not an authorisation for a person to enter private property and prior authority must be obtained from the land owner in all circumstances.
- 5. The issue of this permit does not negate the requirement to comply with the provisions of other Acts that may impact on the activity undertaken pursuant to this permit.
- 6. This permit is not an approval to clear native vegetation.
- 7. Due to potential land contamination issues it is recommended that a hydrogeological assessment be carried out to determine the long term prospects for groundwater quality and quantity with regard to the site and desired use.
DEPARTMENT FOR ENVIRONMENT AND WATER

Mt Gambier Office | PO Box 1046 | Mt Gambier SA 5290 | [P] 8735 1134 [F] 8735 1135

PERMIT to undertake a WATER AFFECTING ACTIVITY pursuant to section 135 of the Natural Resources Management Act 2004 WELL PERMIT

- 8. This permit does not authorise the taking of water from the well for any purpose other than testing.
- 9. If the extracted groundwater supply is required for human consumption, it is recommended that the water be quality tested.
- 10. To minimise the risk of contamination, the well should be sited as far as practicable, preferably further than 50 metres from any septic or waste disposal area.

TAKE NOTE that the permit holder, or a person acting on behalf of the permit holder, who contravenes or fails to comply with a condition of this permit is guilty of an offence, and such acts or ommisions may result in the variation, suspension or revocation of the permit.

Date: 11/01/2019

Sonya Knight Water Licensing Officer Delegate of Minister for Environment and Water

Smkhickt

Appendix E – Borehole Logs

BOREHOLE LOG SHEET

0/4/ I 9	Clie Proj	ent : ject :	Airs Para	ervices afield A	s Niport GW	Survey	and Ir	vestig	ation	HOLE	No.	HA	.01
	Loc	ation :	Para	afield A	Airport, SA							SHEE	ET 1 OF 1
	Pos	ition :				Μ	IGA94	54/2	Surface RL:	Angle from Horiz. : 90	0		Processed : RW
	Rig	Type :		4/0/00/	Mo	unting:	Def		Contractor :	Driller : SW			Checked : JH
	Date	e Start	ed: 1	4/2/20	19		Dat	te Com	pleted : 14/2/2019	Logged by : JC			Date: Note: * indicates signatures on original
2 5			DRILL	ING					MATERI	AL			issue of log or last revision of log
	SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Des SOIL TYPE, colour, struct ROCK TYPE, colo weather	scription ure, minor components (origin), and ur, grain size, structure, ring, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations
		Hand Auger	Nil	NE		0.10		CL CL	Silty CLAY; low plasticity, p	ale brown	D	VS	
						0.20			End of borehole at 0.2 metr Target Depth	7es.			
┠	See	stan	dard s	sheets	for		GHI	D				lob N	lo.
	deta & b	ails of asis o	abbr f des	eviatio criptio	ons C	HD	Level T: +6 CON	4, 211 ' 1 8 811 SULTI	Victoria Square, Adelaide SA 500 1 6600 F: +61 8 8111 6699 E: NG GEOTECHNICAL ENGI	0 Australia : adlmail@ghd.com NEERS AND GEOLOGISTS			3319051

	Client :	Airs	service	S Airport Old	10	(0 ° - 1 '	nuact: -	ation			HOLE No.	P34	4
	vroject :	Par : .SA	afield /	Airport GW	v Survey	/ and I	nvestig	ation				SHEE	T 1 OF 1
[osition :	. , c.			М	GA94	54/2	Surface RL:	Α	ngle f	rom Horiz. : 90°		Processed : RW
F	Rig Type	: (Geopro	be Mo	ounting:	Land	Rover	Contractor : Geochemtech	D	riller :			Checked : JH
	ate Star	ted: 2	29/11/2	2018	-	Da	te Com	pleted: 29/11/2018	L	ogged	by:JC		Date: 2/4/2019
		DRILL	ING					MATERIAL	_				issue of log or last revision of log BOREHOLE
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
	nd Auger				0.40		SC	Clayey SAND; fine grained, poorly sorted, dark brown, medium plasticity clay, trace gravel silt	D	S		~	Grout backfill
	a T	_			0.50		SC CL	Clayey SAND; fine grained, well sorted, pale brown, medium plasticity clay CLAY; high plasticity, pale brown, mottled orange trace	D	S S			Bentonite
- 1 - - - - -					1.00		CL	fine sand as above, but no longer mottled	D	S			Sand Pack
-2 - - - - - -		it Auger	ĞŌ		2.00		CL	as above with trace gravel	D	F			
-3	Solid Flight Aug	Nil			3.00		CL	as above but slightly moist	SM	F			
-44444444444444444444444444444			GĒ	P34 (4 m)	5.00		CL	as above but wet	W	S			4 m sioteo screen
					6.00		SP	SAND; fine to medium grained, pale brown	W	VS			
						<u></u>		End of borehole at 6 metres. Target Depth					
Ę													
F		ale = -		. for		Сп						Joh N	
	ee stan letails o	f abbr	sneets reviati	ons		Level	4, 211 \	Victoria Square, Adelaide SA 5000 Austr	alia	nd acre			00400=4
8	basis (of des	criptio	ons 📔		CON	SULTI	NG GEOTECHNICAL ENGINEER	anwy S Al	ND G	EOLOGISTS	,	3319051

BOREHOLE LOG SHEET

В	DREHO	LE LO	g shei	ET									
	ient :	Airs	services	S	NG			- 11			HOLE No.	P35	5
Pr	oject :	Par	atield A	AIRPORT GV	v Surve	y and I	nvestig	ation				SHEET	1 OF 1
	sition	:, 3F	٩		N	IGA94	54/2	Surface RI :	Δ	nale fr	om Horiz · 90°		Processed · RW
Ri	q Type	: (Geopro	be M	ounting	Land	Rover	Contractor : Geochemtech	D	riller :			Checked : JH
Da	te Star	ted: 2	29/11/2	018		Dat	te Com	pleted: 29/11/2018	L	ogged	by : JC		Date: 2/4/2019
2		DRILL	.ING					MATERIAL				N	ote: * indicates signatures on origina issue of log or last revision of log
0.00	ро			ests	metres			Description SOIL TYPE, colour, structure,	ndition	- x	Comments/ Observations	Log	Components
SCALE (m)	Drilling Meth	Hole Support \ Casing	Water	Samples & T	Depth / (RL)	Graphic Log	USC Symbol	minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Cor	Consistency Density Index		BOREHOLE	
-	ıger				0.20		SC	Clayey SAND; fine grained,	D	S		× ×	Grout backfill
	d AL				0.20		CL	plasticity silt, trace organics	D	S			
-	Tan Tan	4			0.50	H		CLAY; medium plasticity, pale ر brown, trace gravel, cobbles	<u> </u>				
-					1.00		UL	as above but stiff		St			Bentonite
1					1.00	$\forall / /$	-CL	as above but firm, trace gravel,	D	F			-
					1.20		CI	organics CLAY; high plasticity, dark brown	D	F			
ţ					1.50		CL	CLAY; high plasticity, pale	D	s			
Ē					2.00			brown, fine grained sand, trace gravel/, cobbles					
-2					2.00		CL	CLAY; high plasticity, reddish	М	St			Sand Pack
- - - - - - - -					3.00								
- J - - - - - - - -	I Flight Auger	Nil					CL	CLAY; high plasticity, pale brown,	M	St			
-4 - - - - - -	Solid		æ	P35 (4 m)	4.00		CL	CLAY; high plasticity, pale brown, reddish brown, mottled grey	W	St			
-5 - - - - - -			GO		5.00		- <u>c</u> ı -	as above but meduim plasticity, trace gravel	W	F			4 m slotted screen
- - - - - - - - - - -					6.00		- <u>c</u> ı -	as above but mottled grey/orange	w	F			
-7	♥				7.00	<u> </u>		End of borehole at 7 metres.	-			<u> </u>	
E								Target Depth					
Se	e stan	dard	sheets	for		GHI	D	liatoria Paulora Adal-12- 04 5000 A	olic			Job No).
de &	etails o basis (f abbr of des	eviatio criptic	ons (Level T: +6 CON	4, 211 \ 1 8 811 SULTII	NCIONA Square, Adelaide SA 5000 Austr 1 6600 F: +61 8 8111 6699 E: adlm NG GEOTECHNICAL ENGINEER	ana ail@g S Al	hd.com	OLOGISTS	3	319051

14/18	Clier	it :	Airs	ervices	S Nime and CM		urvey and Investigation					HOLE No.	P36	6
פח	Proje Loca	tion :	, SA		Airport Gw	Survey	/ anu i	nvesug	allon				SHEE	T 1 OF 1
	Posi	tion :				М	GA94	54/2	Surface RL:	Α	ngle f	rom Horiz. : 90°		Processed : RW
	Rig 1	ype :	: (Geopro	be Mc	ounting:	Land	Rover	Contractor : Geochemtech	D	riller			Checked : JH
	Date	Start		.0/11/2	010		Da	le Com			Jyget	i by . JC		Note: * indicates signatures on original
2 				ING										BOREHOLE
	SUALE (M)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
						0.20		SC SC	Clayey SAND; fine grained, poorly sorted, medium brown, medium plasticity clay, trace	D D	S S			Grout backfill
		land Auger —				0.50		-sc-	as above with gravel, cobbles as above but pale brown/orange	D	S			
	1		-			1.00		CI	CLAY; high plasticity, pale brown/orange	D	S			Bentonite
	2					2.00								Sand Pack
	3		V ii					G	as above with gravel, cobbles		VSt			
	4	olid Flight Auger		GO		4.00		- <u>c</u> ı -	as above but mottled grey	D	St			4 m slotted screen
	5	S									51			
						6.00								
	7			ĞĒ	P36 (6 m)				End of borehole at 6 metres. Target Depth					
ŧ														
	See	stan	dard s	sheets	for		GH	D				,	Job N	0.
	deta	ils of	fabbr	eviatio	ons	HD	Level T: +6	4, 211 1 8 811	Victoria Square, Adelaide SA 5000 Austr 1 6600 F: +61 8 8111 6699 E: adlma	alia ail@gl	nd.con	n	4	3319051
	or Da	SIS C	n aes	criptic	ns 🛛		CON	SULTI	NG GEOTECHNICAL ENGINEER	S AN	ID G	EOLOGISTS		

BOREHOLE LOG SHEET

BOREHOLE LOG SHEET	
--------------------	--

Cli Pre	ent : oject :	Airs Para	ervices afield A	s Airport G\	V Surve	y and I	nvestig	ation			HOLE No.	P37	,		
Lo	cation :	, SA	١									SHEE	P37 HEET 1 OF 1 Processed : RW Checked : JH Date: 2/4/2019 Note:*indicates signatures on origi BOREHOLE OF UT OF		
Po	sition :		Peopro	ha M	N	IGA94	54/2 Rover	Surface RL:	A	ngle fr	om Horiz. : 90°		Processed : RW		
Da	te Start	ed: 2	8/11/2	018	ounting.	Da	te Com	pleted : 29/11/2018	L	ogged	by:JC		Date: 2/4/2019		
		DRILL	ING					MATERIAL				N	lote: * indicates signatures on original issue of log or last revision of log BOREHOLE		
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components		
-	nd Auger				0.20		SC SC	Clayey SAND; fine grained, poorly sorted, dark brown, low plasticity clay, trace organics Clayey SAND; fine grained, well sorted, pale brown, medium plasticity clay, trace gravel, cobbles	D	VS VS			Grout backfill		
-1 - - - -	Ha	-											Bentonite		
-2					2.00		CL	CLAY; high plasticity, medium brown	SM	VSt					
-3		Nil	60		3.00		- CL	as above but mottled orange, trace stones	SM	VSt			- Slotted Screen		
- 5			de	P37 (5 m)	5.00		- CL	as above but mottled grey	SM	VSt					
-6-	∀				6.00			End of borehole at 6 metres. Target Depth							
- -7 -															
Se de &	e stan tails of basis c	dard s f abbr of des	sheets eviatio criptic	for ons ons	HD	GH Level T: +6 CON	D 4, 211 \ 61 8 811 ISULTII	/ictoria Square, Adelaide SA 5000 Austr 1 6600 F: +61 8 8111 6699 E: adlma NG GEOTECHNICAL ENGINEER	alia ail@gl S_AN	nd.com		Job No	^{5.} 3319051		

E	BORE	IOLE	LOG	SHEET

Cli Pre	ent : oject :	Airs Par	ervices afield A	s Airport GW	/ Survey	and I	nvestig	ation			HOLE No.	P38	3
Lo Po	cation :	: , SA	4		М	GA94	54/2	Surface RL:	Α	nale fr	om Horiz . : 90°	SHEE	F 1 OF 1 Processed : RW
Rig	g Type	: (Geopro	be Mo	ounting:	Land	Rover	Contractor : Geochemtech	D	riller :			Checked : JH
Da	te Star	ted: 2	28/11/2	018	1	Da	te Com	pleted: 29/11/2018	L	ogged	by : JC		Date: 2/4/2019
		DRILL	ING					MATERIAL					issue of log or last revision of log BOREHOLE
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
- - -					0.50		SC	Clayey SAND; medium grained, poorly sorted, yellow, orange, medium plasticity clay, trace gravel, organics	SM	S		***	Grout backfill
-	Hand Auger				1.00		SC	Clayey SAND; medium grained, poorly sorted, dark brown, mottled orange, high plasticity clay	SM	St			Bentonite
							CI	CLAY; high plasticity, pale brown, mottled orange	SM	F			
		-			2.00		CI	CLAY; high plasticity, dark grey	SM	F			Sand Pack
		_	GO		3.00		CH	CLAY; high plasticity, pale brown	SM	S			
- 3 - - - - - - - - - -	lid Flight Auger	Z			4.00		CI	as above but medium plasticity, trace gravel	SM	St			4 m slotted screen
	S0		GE	P38 (4 m)			CI	as above but soft	М	F			
	.				6.00			End of borehole at 6 metres.					
Se de &	e stan tails o basis o	dard s f abbr of des	sheets eviatio	for ons ons	HD	GHI Level T: +6	D 4, 211 V 61 8 811	/ictoria Square, Adelaide SA 5000 Aust 1 6600 F: +61 8 8111 6699 E: adlm NG GEOTECHNICAL ENGINEEE	ralia ail@gl	nd.com		Job Ne	o. 3319051

В	DREHO	LE LOO	g shee	ET									
CI	ient :	Airs	ervices	3							HOLE No.	P39	
Pr	oject :	Para	afield A	Airport GW	Surve	y and I	Investig	gation				SHEET	1 OF 1
	sition	.,0-	\		N	1GA94	54/2	Surface RL:	A	nale f	rom Horiz. : 90°		Processed : RW
Ri	q Type	: (Geopro	be Mo	ounting	Land	Rover	Contractor : Geochemtech	D	riller :			Checked : JH
Da	te Star	ted: 2	.8/11/2	018		Da	te Com	pleted: 29/11/2018	L	ogged	by:JC		Date: 2/4/2019
Γ		DRILL	ING					MATERIAL				N	ote: * indicates signatures on origina issue of log or last revision of log
SCALE (m)	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
-							CL	CLAY, medium plasticity,	SM	F		× ×	Grout backfill
Ł					0.20	$\forall f \neq$	CI	trace gravel		VSt			
F					0.50			CLAY, meudim plasticity,					Bentonite
-	land Auger				1.00		CI	CLAY, high plasticity, brown/orange	SM	F			Dentonite
-1 - - - -		_			1.00		СН	as above but meduim plasticity	SM	F			Sand Pack
- - -2 - - -			ĞŌ		2.00		<u> </u>	as above but high plasticity	D	н			
- - - - - - - - - - - - - -	I Flight Auger	Nii	Œ	P39 (3m)	3.00		CI	CLAY, high plasticity, dark brown	M	VSt			4.5 m slotted screen
-4	Solid				5.00								
-					6.00		CH	CLAY, medium to high plasticity, pale/medium brown	W	VSt			
-6 - - - - - - -					6.00			End of borehole at 6 metres. Target Depth					
E													
S	e stan	dards	sheets	for		GH	D				J	lob No).
de	tails o	fabbr	eviatio	ons 🤆	ID	Level	4, 211	Victoria Square, Adelaide SA 5000 Aust 1 6600 F: +61 8 8111 6699 E: adlm	ralia ail@a	hd com		-	240054

& basis of descriptions

2212021

I

Client :	Airs	ervices	5									
Project	: Par	afield A	Aiport GW	Survey	and Ir	vestiga	ation			HOLE No.	P40	
Location	n: Par	afield A	Airport, SA	N	CA04	54/2	Surface DL	•	nalo fi	com Horiz : 00°	SHEET	TOF 1
Rig Typ	e:		Мо	ounting:	Land	Rover	Contractor : WB Drilling		riller :	DW		Checked :
Date Sta	arted: 2	29/1/20	19		Dat	te Com	pleted : 29/1/2019	L	ogged	by:JC		Date:
	DRILL	ING					MATERIAL				No	ote: * indicates signatures on origin issue of log or last revision of log BOREHOLE
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
rger				0.20	0 -1	GM	Silty GRAVEL; fine grained,	D	L			
IN Dr				0.20		CL	plasticity silt, trace organics	D	н			
	_			0.50		CL	brown CLAY; medium plasticity, black	D	н			← Bentonite
1				1.00		CL	CLAY; high plasticity, pale brown, trace gravel	D	H			
2				2.00		SC	Clayey SAND; fine grained, pale brown, mottled light grey, meduim plasticity clay	D	Н			Sand Pack
jer –	_			3.00		SC	as above but mottled orange	D	Н			
solid Flight Aug	IN	Ē Œ	∀ GE P40 (3.3m)			CL	CLAY; high plasticity, pale brown, mottled orange	D	VSt			
4				4.00		-cl-	as above but medium plasicity, mottled orange/grey	M	H			■— 3 m slotted screen
5				5.00		-cl-	as above but high plasicity	M	S			
6				6.00			End of borehole at 6 metres					
7							Target Depth					
			<u> </u>									
See sta	indard a	sheets	for		GHI Level	D 4, 211 י	/ictoria Square, Adelaide SA 5000 Austr	alia		Jo	ob No).
& basis	s of des	criptic	ons		T: +6	51 8 811 SULTI	1 6600 F: +61 8 8111 6699 E: adlma	ail@g S Al	nd.com		3	319051

Desi: MoRAH 64/2 Surface RL: Angle from Horiz:: Orccessed : Processed : Strate: 21/2019 Dete Completed: 21/2019 Dete Completed: 21/2019 Checked : Detection: Botton:	Client : Project :	Airs Para	ervices afield A	iport GW	Survey	and In	ivestiga	tion			HOLE No.	P41	
Upper Mounting: Lond Row Contractor: WB Diffing Differ: SW Oncluded: Started : 24/12019 Logged by : JC Upper Logged by : JC Detection DRILLING MATERIAL Description Solid Startegy Solid Staregy	ocation : Position :	Para	afield A	irport, SA	M	GA94	54/2	Surface RL:	A	ngle f	rom Horiz. : 90°	SHEET	Processed : RW
Starter: 29//2019 Date Completed: 29//2019 Logged by : J.C Date: DRILLING MATERIAL Comments Comments Comments DOREHOLE DRILLING affect of the standard st	Rig Type :			Мо	ounting:	Land	Rover	Contractor: WB Drilling	D	riller :	SW		Checked :
DRILLING MATERIAL Comments Comments Description point of the second state and state second state and the second state and the second s	Oate Start	ed: 2	9/1/201	19		Dat	te Com	pleted : 29/1/2019	L	ogged	by:JC		Date:
Dot of Bin 1 Sin 2 Sin 2 Component Sin 2 Component Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Sin 2 Image: Sin 2 Sin 2 Sin 2 Sin 3 Sin 2 Sin 3 <		DRILL	ING					MATERIAL					issue of log or last revision of BOREHOLE
Boy Degree 0.20 <th>Drilling Method</th> <th>Hole Support \ Casing</th> <th>Water</th> <th>Samples & Tests</th> <th>Depth / (RL) metres</th> <th>Graphic Log</th> <th>USC Symbol</th> <th>Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength</th> <th>Moisture Condition</th> <th>Consistency / Density Index</th> <th>Comments/ Observations</th> <th>BOREHOLE Log</th> <th>Components</th>	Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
Total CL masket/stit The organics D Fr Bentonic CL masket/stit Tace D Fr Bentonic CL CL masket/stit Tace D Fr Bentonic CL CL Masket/stit D Fr Bentonic CL CL CL Masket/stit D Fr Bentonic CL CL CL CL Sand Pack CL CL CL CL CL Sand Pack Bentonic CL CL CL Sand Pack Bentonic CL Sand Pack Sand Pack CE P41 Sand Pack Sand Pack Bentonic CL Bentonic M Sand Pack CL Sand Pack Sand Pack CE P41 Sand Pack Sand Pack Bentonic CL Bentonic M Sand Pack Sand Pack Sand Pack Bentonic Sand P	lger				0.20	0 -	GM	Silty GRAVEL; fine grained,	D	Fr			
Image: Same Pack Image: Same Pack Imag	Hand Au				0.20		CL	plasticity silt, trace organics Silty CLAY; high plasticity, pale brown, mottled orange, trace gravel	D	Fr			Bentonite
OP TOUL Image: Second	er – 19				2.00		CI	CLAY; high plasticity, medium brown, mottled orange/grey	D	St			Sand Pack
6.00 End of borehole at 6 metres. Image: Image Ima	Solid Flight Aug	Ni	€€	P41 (3.5)	3.50		- <u>c</u> ı -	as above but moist	M	St			3m slotted screen
etenderd sheets for GHD	¥				6.00			End of borehole at 6 metres. Target Depth					
standard shasts for GHD Job No													
Staliudiu Sileets Iui	e stan	dard s	sheets	for		GH)	lictoria Square Adelaida SA 5000 Aust	alia		J	lob No	

Client :	Airs Par	services afield A	S Ainort GW	Survey and	t Investi	nation		HOLE No.	P42		
Location	n: Par	afield A	Airport, SA	Survey and	i investi	Jalion			SHEET	1 OF 1	
Position	:			MGA	94 54/2	Surface RL:	Angle f	rom Horiz. : 90°		Processed : RW	
Rig Type	e :		Мо	unting: La	nd Rove	r Contractor : WB Drilling	Driller	SW		Checked :	
Date Sta	rted: 2	29/1/20	19		Date Co	npleted : 29/1/2019	Logged	l by : JC	No	Date: Note: * indicates signatures on or issue of log or last revision of le BOREHOLE Old Components Bentonite Bentonite Sand Pack Sand Pack 3 m slotted screen 3 m slotted screen	
	DRILL	ING				MATERIAL			i	ISSUE OF LOG OF LAST REVISION OF LOG	
SCALE (m) Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres Granhic I on	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components	
-1	_			0.20 0.30 0.50		SILT; low plasticity, dark brown, trace organics CLAY; medium plasticity, pale brown as above but high plasticity, hard, trace gravel as above but medium plasticity as above but high plasticity, mottled orange	D H D S D H D H D H			Bentonite	
2										Sand Pack	
5 Solid Flight Auge	Z	⊈ GE	P42 (3.5m)							3 m slotted screen	
5				6.00		End of borehole at 6 metres.					
7 See sta	ndard	sheets	a for	G C	HD vel 4, 211	Victoria Square, Adelaide SA 5000 Aust	ralia		Job No		

& basis of descriptions

3319051

I

lient ·	Air	service	s									
roject	: Pa	afield /	Aiport GW	Survey	and Ir	nvestiga	ation			HOLE No.	P43	
ocatio	on: Pa	afield /	Airport, SA		0404	E 4/0		•			SHEET	1 OF 1
ositio 2ia Tvr	n: ne:		Mo	M Nuntina:	GA94	54/2 Rover	Surface RL:	А П	ngle fi riller ·	sw		Processed : RW
Date St	tarted : 3	30/1/20)19	vantarig.	Da	te Com	pleted : 30/1/2019	L	ogged	by : JC		Date:
	DRILI	ING					MATERIAL				N	ote: * indicates signatures on orig issue of log or last revision of log
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
				0.20		MH	SILT, low plasticity,	D				
				0.20	0	GP-	grained gravel, trace organics	D	н			
				0.50		GC	Gravely SIL I; fine grained, pale brown clayey GRAVEL, fine grained, pale brown	D	Н			Bentonite
				1.30		CL	CLAY, high plasticity, pale brown	D				
				2.00		CL	becomes moist	M	-			Sand Pack
	II.N	€	P43 (3.5	3.00		CL- CI	becomes medium plasticity, firm	M	F			
			`m)	1.00								
				4.00		CL	becomes high plasticity, mottled orange, trace rocks	M	St			3 m slotted screer
				6.00								
							End of borehole at 6 metres. Target Depth					
	andard	shoot	s for		GH	D					Job No).
55 36	of abb	reviati	ons C		Level	4, 211	/ictoria Square, Adelaide SA 5000 Austr	alia	hd com			040054

Client ·	LE LOO		EI									
Project :	Para	afield	 Aiport GW	Survey	and Ir	vestiga	ation			HOLE No.	P44	ļ
Location	: Par	afield	Airport, SA	\		5					SHEET	「1 OF 1
Position :				М	GA94	54/2	Surface RL:	Α	ngle fr	om Horiz. : 90°		Processed : RW
Rig Type	: • • • • • • •	0/1/20	Mc	ounting:	Land	Rover	Contractor : WB Drilling		riller :	SW		Checked :
Date Star		0/1/20	519		Da	le Com		L	oggea	by:JC	N	Date: ote: * indicates signatures on origin
		.ING	1				MATERIAL		_			BOREHOLE
Drilling Method	Hole Support \ Casing	Water	Samples & Tests	Depth / (RL) metres	Graphic Log	USC Symbol	Description SOIL TYPE, colour, structure, minor components (origin), and ROCK TYPE, colour, grain size, structure, weathering, strength	Moisture Condition	Consistency / Density Index	Comments/ Observations	BOREHOLE Log	Components
lger				0.20		MH	SILT, low plasticity, pale	D	S			
IN AL				0.20		CL	CLAY, meduim plasticity, red	D	S			
				0.50		CL	CLAY, high plasticity, pale brown, red, grey, trace gravel, calcrete	D	St			Bentonite
1				1.00		CL	becomes mottled dark brown,	D	St			
2				2.00		-CL-	becomes mottled orange	D	St			Sand Pack
Solid Flight Auger	ΪŻ	GE	P44 (3.4 m)	3.00		-cl-	becomes very stiff	D	VSt			
				4.00								
4		Ā		4.00		CL	becomes stiff	D	St			3 m slotted screen
5												
5 T				6.00			End of borehole at 6 metres.					
7												
	1											
See stan	dard s	sheets	s for	\sim	GH	D				J	ob No).
letails o	fabbr	eviati	ons	HD	Level	4, 211 V	Victoria Square, Adelaide SA 5000 Austr 1 6600 F: +61 8 8111 6699 F: adlm	ralia ail <i>ത</i> ര	hd.com			240054
basis o	of des	cripti	ons 🛛 🎽	\sim	CON						,	0213021

Appendix F – Calibration Certificates

Solinst Model 122 Interface Meter

InstrumentInterface Meter (30M)Serial No.312512

Item	Test	Pass	Comments
Battery	Compartment	1	:
	Capacity	1	8.8V
Probe	Cleaned/Decon.	✓	1
	Operation	✓	
a a construction of the co	····· · · · · · · · · · · · · · · · ·		
Connectors	Condition	\checkmark	· · · · · · · · · · · · · · · · · · ·
	****	✓	
Tape Check	Cleaned	1	· · · · · · · · · · · · · · · · · · ·
Connectors	Checked for cuts	✓	£ •••• • • • • • • • • • • • • • • • •
			· · · · · · · · · · · · · · · · · · ·
			4
Instrument Test	At surface level	\checkmark	
motrament rest			
	•••••••••		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: James Draper Calibration date: 9/11/2018

Next calibration due:

8/01/2019

1. 1

Instrument YSI Quatro Pro Plus Serial No. 18D102941

ltem	Test	Pass	Comments
Battery	Charge Condition	1	
	Fuses	1	
	Capacity	1	
Switch/keypad	Operation	1	
Display	Intensity	1	
	Operation (segments)	~	
Grill Filter	Condition	1	
	Seal	1	
PCB	Condition	~	
Connectors	Condition	✓	
Sensor	1. pH	1	
	2. mV	1	
	3. EC	×	
	4. D.O	1	
	5. Temp	✓	
Alarms	Beeper		
	Settings		
Software	Version		
Data logger	Operation		
Download	Operation		
Other tests:			

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. D.O		0 ppm	1	5656	0 ppm
2. Conductivity		2760uS	1	312321	2760
3. pH7		pH 7.00		307928	pH 7.01
4. pH4		pH 4.00		307927	pH 4.00
5. ORP mV		231mV /		314446/312984	229 mV
7. Temp °C		21.1	1	Multimeter	22

Calibrated by:

Wilma Fouché

Calibration date:

14-Nov-18

Next calibration due:

13-May-19

Solinst Model 122 Interface Meter

Interface Meter (30M) Instrument 312523 Serial No.

ltem	Test	Pass	Comments
Battery	Compartment	✓	
	Capacity	4	8.7V
			· · · · · · · · · · · · · · · · · · ·
Probe	Cleaned/Decon.	✓	· · · · · · · · · · · · · · · · · · ·
	Operation	1	
	g.5.8.5.5.577.5.11		
Connectors	Condition	eren en e	
	Contantion		
Tapo Chock	Cleaned		•
Connectore	Checked for cute		
Connectors	Checked for cuts		
	Af avefa a lavel		
instrument lest	At sufface level	• •	
	÷		

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by: - Giovanni Pambuan

Calibration date:

5/12/2018

Next calibration due:

3/02/2019

Instrument **YSI Quatro Pro Plus** 18J104342 Serial No.

ltem	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	
	Capacity	✓	
Switch/keypad	Operation	✓	
Display	Intensity	✓	
	Operation	✓	
	(segments)		
Grill Filter	Condition	✓	
	Seal	✓	
PCB	Condition	✓	
Connectors	Condition	1	
Sensor	1. pH	✓	
	2. mV	✓	· · · · · · · · · · · · · · · · · · ·
	3. EC	✓	1
	4. D.O	✓	· · · · · · · · · · · · · · · · · · ·
	5. Temp	✓	1
		• • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·
Alarms	Beeper		· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	Settinas	*************************************	
Software	Version	<pre></pre>	· · · · · · · · · · · · · · · · · · ·
Data logger	Operation		· · · · · · · · · · · · · · · · · · ·
Download	Operation		••••••••••••••••••••••••••••••••••••••
Other tests:			dare a ser e e e e e e en entre en ere en ere e e e e e e e e e e e e

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. D.O		0 ppm		5656	0 ppm
2. Conductivity		2760uS		312321	2760
3. pH7		pH 7.00		307928	pH 7.01
4. pH4		pH 4.00	ſ	307927	pH 4.00
5. ORP mV		231mV	, '	314446/312984	227.5mV
7. Temp °C		21.1		Multimeter	23
Calibrated by:		Ann	Wilma Fo	uché	

Calibration date:

Wilma Fouch

Next calibration due:

3-Jun-19

Ī 5-Dec-18

Solinst Model 122 Interface Meter

InstrumentInterface Meter (30M)Serial No.312359

Item	Test	Pass	Comments
Battery	Compartment	1	
	Capacity	1	8.6V
Probe	Cleaned/Decon.	✓	
	Operation	1	
Connectors	Condition	1	
	}	\checkmark	
Tape Check	Cleaned	1	
Connectors	Checked for cuts	✓	
Instrument Test	At surface level	✓	
· · · · · · · · · · · · · · · · · · ·	-		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·
	•		· · · · · · · · · · · · · · · · · · ·
		•••••••••••••••••	
	· {· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	· { • · • • • · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	•		· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·

James Draper

Certificate of Calibration

This is to certify that the above instrument has been cleaned and tested.

Calibrated by:

Calibration date:

7/03/2019

Next calibration due:

6/05/2019

Instrument	YSI Quatro Pro Plus
Serial No.	18J104323

Item	Test	Pass	Comments
Battery	Charge Condition	✓	
	Fuses	✓	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Capacity	 ✓ 	
Switch/keypad	Operation	\checkmark	
Display	Intensity	✓	
	Operation	1	
	(segments)		
Grill Filter	Condition	✓	A. C. C. C. C. C. C. Matter and C. C. Matter and C. C. C. C. C. C. Matter and Matter and C.
	Seal	1	
PCB	Condition	✓	1999 - 199
Connectors	Condition	\checkmark	αν τη δεντηγιατική τη
Sensor	1. pH	✓	· · · · · · · · · · · · · · · · · · ·
	2. mV	✓	
	3. EC	✓	· · · · · · · · · · · · · · · · · · ·
	4. D.O	1	· · · · · · · · · · · · · · · · · · ·
	5. Temp	1	· · · · · · · · · · · · · · · · · · ·
	····		· · · · · · · · · · · · · · · · · · ·
Alarms	Beeper		· · · · · · · · · · · · · · · · · · ·
	Settings		
Software	Version	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Data logger	Operation	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Download	Operation		· · · · · · · · · · · · · · · · · · ·
Other tests:			۶

Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

Sensor	Serial no	Standard Solutions	Certified	Solution Bottle Number	Instrument Reading
1. D.O		0 ppm		5656	0 ppm
2. Conductivity		2760uS		324347	2760
3. pH7		pH 7.00		320613	pH 7.01
4. pH4		pH 4.00		324985	pH 4.00
5. ORP mV		231mV		314446/312984	227.2 mV
7. Temp °C		22.4		Multimeter	22.6
Calibrated by:	Joan	۱ 	_James Dr	aper	
Calibration date		7-Mar-19			
Next calibration	due:	3-Sep-19			

Appendix G – Laboratory Reports and COCs

NMI CHAIN OF CUSTODY (SAMPLE SUBMISSION) FORM

ENVIRONMENTAL SAMPLES to be submitted to:

NMI: 105 Delhi Rd, North Ryde NSW 2113 Ph: 1300 722 845 email: customerservice@measurement.gov.au

SENT FROM:	and the start of a second start			1011	. 1500	TLL U-	J em	an. custo	Jine	Interna	luse or	measu	remen	it.gov.	au			
Company Name:	GHD PTY LTD						-		-	NMIO	unte N	umbar	GHDw	A TI 1011	IN	Mallel	1 23	
Address:	LEVEL 4 , 211 Victoria Square	Adelaide , SA 5000	GPO Box 2052 Adelaide	e. South	Austral	ia 5001	-		_	LIMS	oferer	uniber.	OT 02	10		valio until		October 31, 2019
Contact:	Dilara Valiff		Additional email(s) for	report	s (if real	uired):	-		_	TURN	APOLI	ID TIME	DEOLIES		U akina dar	-		
Phone:	08 8111 6572		-		- (24 hrs	AROUN		REQUES		rking day	(s):	*Fact	TATs are not available for all test
ABN:	39 008 488 373		Additional email(s) for	invoice	e (if requ	uired):				100%	40 m	3 3-4	Sail	D-7	Biota +	(please	and	MUST be agreed to prior to sampl
Contact email:	dilara.valiff@ghd.com		-			in cuj.				100%	50%	25%	50H	& water	Serum	specify)	-	submission
If a PO number is required on yo	our invoice, it must be provide	ed at sample submission. PO	's received after sample	submi	sison wi	ll not ann	ear on	inal invoic		urchas	ot avail	able	d. V /			7710	005	
										urcitas	Se bi de	require	u. r /	N PO	Number	:	103	
NMI LRN (NMI USE ONLY - please do not write in this column)	SAMPLE REFERENCE (Sample ID / Description / Number)	SAMPLE MATRIX (water / soil / biota)	PEAL Low Level	Tos				Test	s Requir	red - ple	ase specify	,					COMMENTS	
	P9	15-11-18 11:00	Wester	1	X						<u> </u>	T						
	QAOI	15-11-18 11:00	Water	V	V													
00																		
			- /						-				-				-	
TON									_									
FILL																		
NMI														-				
The second second												-						
490				-					-	-	-							
DNUY																		
the state of the					-													
And a state of the									-	-	-	-						
									-									
and the second second																		
and the second second											-							-
Relinquished by: Print Name:	Vera Biermann				Received at NMI laboratory by: Print Name:						PAGE No: of				PAGES			
iignature:	15/11/19 13:00 hrs Nem B.C.				Date & Time: / / ; Signature:					: hrs If multiple pages, ensure ALL pages are stapled to				ogether				

CHAIN OF CUS TODY RECORD	10.12															Turna	ound Requ	erement.	 	Page of
GHD	GHD Adela	ide		GHD M	t Gambie	r					GHD Rox	by Downs				N/ST	ANDARO			
	Telephone. 6	Square, Adelarde 518 8111 6600 Fr	- SA 5000 acsimile: 618 8111 6699	2A Hele Telepho	n SI, Mt G ne 518 87	ambier SA 721 0800 F	i 5290 Facsimile	618 8721	0899		1/14 Tutoj Telephone	St. Roxby 618 8571	Downs SA 4000 Facs	umie 618 8	71 4099	EI NO	DN-STANE	DARD	 	
Job Number GHD Office	Emai admi	Relinguish	ed By;	•	Recel	ved Bv:					Relinau	ished B	10.		Rec	aivad S	14'		— —	SEND TO:
3319051 Adela	ide			\sim		,						ioned b	. . .				y.			2-4 Westali Rd, SPRINGVALE, VIC 3171
Project		Date/Time:	,	้งไ	Date/1	lime:					Date/Ti	me:			Date	e/Time:				Ph 03 8549 9600 Contact
				Ť																MGT LabMark
GHD Project Manager	GHD Con	ntact		iz				0.05100			Analys	es Recu	nred 🚿							2-5 Kingston Town Close, OAKLEIGH VIC 3156 Ph. 03 9564 7055
Vilara Valiff											1						Τ			Contact
Email Reports to:	Quote			13			· ·									1				SGS 16/J3 Maddox St, ALEXANDRIA NSW 2015
aviara. variet Og				14	ŀ															Ph 02 8594 0400 Contact
A State of the second se		Sample		\sim	۱.															BUREAU VERTIAS AMDEL
Simple I.D. Date	Time	Matrix S: Sol	Container Type J. Jar. B. Bag. V. Viat	Z																2/35 Cormack Rd, WINGFIELD SA 5013
ense der Sterner i Diskonen bereis der der Arte sinder		W: Water	bottie	ロ			· ·													Contact
		$\left \cdot \right $													_	_	_	ļ		Remarks
<u>PST</u> 612	118 -	$\lfloor W \rfloor$			<u>/</u>											_		<u> </u>		
<u>P35</u>																				
P36					1															
P 37				$\overline{\checkmark}$	1,		÷												 	••• · · · · · · · · · · · · · · · · · ·
PZS					1/										+				 	
P 39.				Ň	ĺ,															
pa.					\overline{b}		<u> </u>	-												
$\Theta A \Theta 1$					Ĺ										+			<u> </u>	 	
	·····																			
DRC1				\vdash	<u> </u>												-		 	
			·									-+						<u> </u>	 	
							:	<u> </u>											 	
				ļ	<u> </u>	<u> </u>	:													
]					:													· · · · · · · · · · · · · · · · · · ·
				1			:												 	- Annual - Annua
							:									-	+			
															+				 	
			Lenne,				<u>;</u>								-				 	
Pamarka				l		[:													
Internations.							-													
					~~~						~~~~~									

# NMI CHAIN OF CUSTODY (SAMPLE SUBMISSION) FORM

ENVIRONMENTAL SAMPLES to be submitted to:

SENT FROM:		Ninii. 105 Deini Ra, N	lorth Ryde NSW 2	113 P	h: 130	0 722 84	5 email	: custo	merser	vice@	measu	rement	.gov.au	1			
Company Name:	GHD PTY LTD				_		_		Intern	nal use or	nly		7	-			
Address:	LEVEL 4 , 211 Victoria Squar	e Adelaide . SA 5000	GPO Box 2052 Adala	1. 5			_	_	NMI	Quote N	umber:	GHDxxA	-TL1811N		Valid unt	til:	October 31, 2019
Contact:	Dilara Valiff		Additional amail(a) (	de, Sou	h Austra	alia 5001			LIMS	Referen	ce:	QT-0201	8 0				
Phone:	08 8111 6572			or repo	ts (if red	quired):			TURN	AROUN	ID TIME	REQUESTE	D (Worki	ng days	):		
ABN:	39 008 488 373		Additional amail(a) (-						24 hrs	s 48 hrs	s 3-4	5-	7	10-15	other	*Fast	TATs are not available for all test
Contact email:	dilara.valiff@ghd.com			rinvoi	e (if req	luired):			100%	50%	25%	Soil & V	Vater	Biota + Serum	(please specify)	and N	AUST be agreed to prior to sample submission
If a PO number is required on y	our invoice, it must be provid	ded at sample submission. PC	's received after sampl	o subm	cicon u					not availa	able					1	
		1	/		sison w	in not appe	ear on fina	linvoice	Purcha	se order	required	d:Y / N	PO Nu	mber:			
NMI LRN (NMI USE ONLY - please do not write in this column)	SAMPLE REFERENCE (Sample ID / Description / Number)	DATE & TIME SAMPLED	SAMPLE MATRIX (water / soil / biota)	Pitas (Full stit					Tests Requir	red - plea	se specify						COMMENTS
	P42	7/02/2019	water	V					1				-			$ \rightarrow $	
	P43	7/02/2019	water	~				-	-								
DQ	P41	7/02/2019	Water	~				+	-					_			
NOT	P40	7/02/2019	Water		-												
FILL	рцц	7/02/2019	water	~								-					
NMI	RBOI	7/02/2019	water	~			-	-		-			_	_		$\rightarrow$	
ust	QAOI	7/02/2019	water	~				-					_	-		$\rightarrow$	
ONLY	QA02	7/02/2019	water	~												-	
				-	-		-			-			_				
													-	-		+	
																+	
nquished by: It Name: e & Time:	Joel Chan	Ce	Ri Pi	eceived a	t NMI lab	oratory by:						PAG	iE No:	1	of		
ature:	A		Di Sij	ate & Tin gnature:	2:	/	1				hrs	If mult	iple pages, e	nsure ALL	pages are s	tapled toget	PAGES

Da

# NMI CHAIN OF CUSTODY (SAMPLE SUBMISSION) FORM ENVIRONMENTAL SAMPLES to be submitted to:

		NMI: 105 Delhi Rd, Ni	orth Ryde NSW 21	113 Ph: 1300 722 8	45 email: custom	i to. Ierservice@meacu	Irement cover			
SENT FROM:				and the second secon		Internal use only	inementative	<u>ur ista</u>		
Company Name:	GHD PTY LTD					NMI Quote Number:	GHDxxA-TI1811	N Malid unt	It: October 21	WO
Address:	LEVEL 4 , 211 Victoria Square	Adelaide , SA 5000	GPO Box 2052 Adelaid	le, South Australia 5001		LIMS Reference:	07-02018	A CONTRACTOR		
Contact:	Dilara Valiff		Additional email(s) fo	r reports (if required):		TURN AROUND TIME	REQUESTED (Wor	king days):		
Phone:	08 8111 6572					24 hrs 48 hrs 3-4	5-7	10-15 other	+Fast TATs are not	vailable for all tests
ABN:	39 008 488 373		Additional email(s) fo	r iπvoice (if required):		100% 50% 25%	Soil & Water	Biota + (please	and MUST be agre	d to prior to sample
Contact email:	dilara.valiff@ghd.com	MIRTA			-	not available		Serum Specify		1551011
If a PO number is required on y	our invoice, it must be provide	ed at sample submission. PO	's received after sample	e submisison will not ap	pear on final invoice	Purchase order requir	ed:Y/N PO	Number:	319051	· · · · · · · · · · · · · · · · · · ·
NMI LRN (NMI USE ONLY - please do not write in this column)	SAMPLE REFERENCE (Sample ID / Description / Number)	DATE & TIME SAMPLED	SAMPLE MATRIX (water / soil / biota)	(July Strat		ésts Required – please specil	<u>∕</u>			OMMENTS
	RBOI	14-3-19-	wate/	X						
	QA01	l 1	i	$\times$				· · · · ·		·
	0A02 .								Form	2-4 +0
	Da								A A	<u>5.</u>
	PSE									
	<u>P35</u>			$\times$						
n de la respective de la companya d	P36.			$ \times $						
	P40									
	$D/L_1$								<u> </u>	
	$\Gamma + \Gamma$		<u> </u>						<u> </u>	
	P4/									
	1-4-2			$\times$						
	P44 ·	4		$ \times $						·····
and a second second second										
Relinquished by: Print Name: Date & Time: Signature:	hance 14,3,19	i hrs		Received at NMI laborator Print Name: Date & Time: Signature:	1     viry: / / /	<u>.    </u> : h	PAGE No 13	b: of	2 PAG	5
V			٨	votes:	pleck	z Send	ESD	ATA	ernet	

.

		n se	MI CHAIN OF (		9DY(6	AMP	LESUB	MISSI	ON)	FORM	1			and and a start of the start of	2.54 257 3		Constant of the second
			ENVIRON	IMENT	AL SAN	IPLES t	o be sub	mitted	to:					이상의 사망가 States Th			
		NMI: 105 Delhi Rd, N	orth Ryde NSW 21	13 Ph	1300 7	22 845	i email: c	ustome	erservi	ce@n	leasur	ement.gov	/.au				
SENT FROM:									internal	use only							
Company Name:	GHD PTY LTD								NMI QI	Jote Nu	mber:	GHDxxA-TL18	11N	Valid unti	il:	October 31	019
Address:	LEVEL 4, 211 Victoria Square	Adelaide , SA 5000	GPO Box 2052 Adelaid	le, South	Australia	5001				eference	:	QT-02018	0				
Contact:	Dilara Valiff	····	Additional email(s) fo	r reports	(if requir	ed):				ROUNE	TIME R	EQUESTED (W	/orking da	iys):	1976222333	da tang nang nang na	
Phone:	08 8111 6572								24 hrs	48 hrs	3-4	5.7	10-19	other	*Fast	t TATs are no	available for all tests
ABN:	39 008 488 373		Additional email(s) fo	r invoice	(if requir	ad);			100%	50%	25%	Soit & Water	Biota +	(please	and I	MUST be agr	end to prior to sample
Contact email:	dilara.valiff@ghd.com		_						n	ı ot availat	le		Serum	speenyy	-	500	2 10 201
If a PO number is required on	your invoice, it must be provide	ed at sample submission. PC	)'s received after sampl	e submis	ison will r	iot appe	ar on final i	nvoice	Purchas	e order	reguired	1:Y/N 6	PO Numbo	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	331	rciff	<u>⊳                                    </u>
					-4	<u> </u>			•••••••••••••••••								
NMI LRN (NMI USE ONLY - please do no write in this column)	SAMPLE REFERENCE t (Sample ID / Description / Number)	DATE & TIME SAMPLED	SAMPLE MATRIX (water / soil / biota)	tins (truit	PtAS (10mg)	the leader		Te	sts Requir	ed - pleas	e specify						COMMENTS
	GWP1-PFC	14-3-19	Water	$\times$		1											
	GWPZ-PFC	[		$\left \times\right $										1			<u></u>
	GUPZ-PFC		4	1											1	<u> </u>	
	HAGEN		< ]		' <del>\</del> \	$\overline{\mathbf{v}}^{\dagger}$										ļ	<u> </u>
	11/1-001		1-20.1	+		$\Rightarrow$											<u></u>
	1-1A-0.1-0.2	V	₩₩		$[\Delta]$	$\Delta$											
											****		-		-		
																<u> </u>	<u></u>
	N				<u> </u> -										<u> </u>		<u></u>
	<u></u>			_													
				******										1	1		
				1												<u> </u>	<u></u>

Relinquished by:	
Print Name: Wel Chance	Print Name
Date & Time: 14/3/19 hrs	Date & Time:
Signature:	Signature: If multiple pages, ensure ALL pages are stapled together

CHAIN OF CUSTODY RECORD											Turnaround Requirement		
GHD	GHD	GHD Adelai	de Square Adelaic	In SA 5000	GHD I	Mt Gambi	er	GHI	O Roxby Downs		STANDARD		Page of
	$\smile$	Telephone: 6 Email: adlma	18 8111 6600 F	acsimile: 618 8111 6699	2A Hel Teleph	en St, Mt ( one: 618 8	Sambier SA 5290 1721 0800 Facsimile: 618 8721 0899	1/14 Tele	Tutop St, Roxby Downs SA phone: 618 8671 4000 Facsin	mile: 618 867	NON-STANDARD		_
Job Number GHD	Office		Relinquish	ned By:	-	Rece	ived By:	Rel	inquished By:		Received By:		SEND TO:
JS15565 A	delai	de	Vera	Bierman	1						Nooritu By.	X	2-4 Westall Rd, SPRINGVALE, VIC 3171
Poplad Areat Clink	de la		Date/Time	- 200 M		Date/	Time:	Dat	e/Time:		Date/Time:		Ph: 03 8549 9600 Contact
GHD Project Manager	shqumou	1	14-0	5-2019 11	AM								MGT LabMark
Dilara Valiff		GHD Cont	act	11. 1	100			An	alyses Required	T			2-5 Kingston Town Close, OAKLEIGH VIC 3166 Ph: 03 9564 7055
Email Reports to:		Quote	lian	Howard	+2	2							SGS
dilara.Valisteghd.	com	us pe	remo	11 07/05/19	100	2							16/33 Maddox St, ALEXANDRIA NSW 2015 Ph: 02 8594 0400
			Sample		S	00							
Sample I.D.	Date	Time	S: Soil SL: Sludge	J: Jar, B: Bag; V: Vial; G: Glass bottle: P: Plastic	45	A							2/35 Cormack Rd, WINGFIELD SA 5013
			W: Water A: Air	bottle	40								Ph: 08 8440 7100 Contact
RBOI	13-5-19		11	P	X					-			Remarks
P34	13-5-19		W	P	Y					_		-	
P35	13-5-19		1./	P	Ŷ					-			
P36	13-5-19		11	P	2								
P37	13-5-19		N/	P	5			_					
P40	13-5-19		1.1	P	3							_	
P41	12.5.19		N/	P	3			-					
P42	12-5-19		1.1	P	3							_	
P43	13-5-19		1./	P	5							_	
P44	13-5-19		N./	P	3	_		_				_	
GWPI-PEC	12-5-19		W	P	5	_							
GVP 2-PFC	12-5-19		W	Ð	5								
GWP3-PFC	12-5-19		W	P	3	-		_					
FDOI	12-5-19		W	P	5	-		_					
FD02	12-5-10	-	W	P		-	_	_					
FD02	12 5 19		W	0	X								
SDAL	12-0-17	-	W	r	X								
CDD2	D-S-M		W	r	X	-		_				L PL	ase forward to Envirolat
COUC	15-5-14		W	P	X	-						C	or PEAS analysis
								_					
emarks:													
Please forwa	ird S	DOI	and	I SDO3	th	E	miralah C	r.	EAC and	1			



Australian Government

Department of Industry, Innovation and Science

# National Measurement Institute



### **REPORT OF ANALYSIS**

			Page: 1 of 4
			Report No. RN1215175
Client	: GHD PTY LTD	Job No.	: GHD15/181116
	LEVEL 4, 211 VICTORIA SQUARE	Quote No.	: QT-02018
	ADELAIDE SA 5000	Order No.	: 3319051
		Date Received	: 16-NOV-2018
Attention	: DILARA VALIFF	Sampled By	: CLIENT
Project Name	:		
Your Client Se	rvices Manager :	Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description	
N18/032151	P9	WATER 15-11-18 11:00	
N18/032152	QA01	WATER 15-11-18 11:00	

Lab Reg No.		N18/032151	N18/032152		
Date Sampled		15-NOV-2018	15-NOV-2018		
Sample Reference		P9	QA01		
	Units				Method
Perfluoronated Compounds			-	· · ·	
PFBA (375-22-4)	ug/L	< 0.005	< 0.005		NR70
PFPeA (2706-90-3)	ug/L	< 0.002	< 0.002		NR70
PFHxA (307-24-4)	ug/L	< 0.001	< 0.001		NR70
PFHpA (375-85-9)	ug/L	< 0.001	< 0.001		NR70
PFOA (335-67-1)	ug/L	< 0.001	< 0.001		NR70
PFNA (375-95-1)	ug/L	< 0.001	< 0.001		NR70
PFDA (335-76-2)	ug/L	< 0.001	< 0.001		NR70
PFUdA (2058-94-8)	ug/L	< 0.001	< 0.001		NR70
PFDoA (307-55-1)	ug/L	< 0.001	< 0.001		NR70
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002		NR70
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002		NR70
PFHxDA (67905-19-5)	ug/L	< 0.002	< 0.002		NR70
PFODA (16517-11-6)	ug/L	< 0.005	< 0.005		NR70
FOUEA (70887-84-2)	ug/L	< 0.001	< 0.001		NR70
PFBS (375-73-5)	ug/L	0.0040	0.0049		NR70
PFPeS (2706-91-4)	ug/L	0.0016	0.0020		NR70
PFHxS (355-46-4)	ug/L	0.027	0.027		NR70
PFHpS (375-92-8)	ug/L	< 0.001	< 0.001		NR70
PFOS (1763-23-1)	ug/L	0.013	0.017		NR70
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001		NR70
PFDS (335-77-3)	ug/L	< 0.001	< 0.001		NR70
PFOSA (754-91-6)	ug/L	< 0.001	< 0.001		NR70
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.002		NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.002		NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002		NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002		NR70
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005		NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005		NR70

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 2 of 4 Report No. RN1215175

Date Sampled         15-NOV-2018         15-NOV-2018         Method           Sample Reference         Units         P9         QA01         Method           Perfluoronated Compounds         4:2 FTS (757124-72-4)         ug/L         <0.001         <0.001         NR70           6:2 FTS (27619-97-2)         ug/L         <0.001         <0.001         NR70           9:2 FTS (20109-24.4)         ug/L         <0.001         <0.001         NR70	Date Sampled Sample Reference
Sample Reference         P9         QA01         Method           Perfluoronated Compounds         4:2 FTS (757124-72-4)         ug/L         <0.001         NR70           6:2 FTS (27619-97-2)         ug/L         <0.001         <0.001         NR70           9:2 FTS (20109-34.4)         ug/L         <0.001         <0.001         NR70	Sample Reference
Units         Method           Perfluoronated Compounds	
Perfluoronated Compounds           4:2 FTS (757124-72-4)         ug/L         <0.001         NR70           6:2 FTS (27619-97-2)         ug/L         <0.001         0.001         NR70           9:2 FTS (20109-24.4)         ug/L         <0.001         <0.001         NR70	
4:2 FTS (757124-72-4)       ug/L       <0.001       NR70         6:2 FTS (27619-97-2)       ug/L       <0.001       NR70         8:2 FTS (20108-24.4)       ug/L       <0.001       NR70	Perfluoronated Compounds
6:2 FTS (27619-97-2) ug/L <0.001 <0.001 NR70	4:2 FTS (757124-72-4)
	6:2 FTS (27619-97-2)
0.2 FTS (38100-34-4)  Ug/L  <0.001  <0.001  NK/O	8:2 FTS (39108-34-4)
10:2 FTS (120226-60-0) ug/L <0.001 <0.001 NR70	10:2 FTS (120226-60-0)
8:2 diPAP (678-41-1) ug/L <0.002 <0.002 NR70	8:2 diPAP (678-41-1)
PFBA (Surrogate Recovery) % 99 103 NR70	PFBA (Surrogate Recovery)
PFPeA (Surrogate Recovery) % 104 119 NR70	PFPeA (Surrogate Recovery)
PFHxA (Surrogate Recovery) % 94 98 NR70	PFHxA (Surrogate Recovery)
PFHpA (Surrogate Recovery) % 102 115 NR70	PFHpA (Surrogate Recovery)
PFOA (Surrogate Recovery) % 99 107 NR70	PFOA (Surrogate Recovery)
PFNA (Surrogate Recovery) % 98 88 NR70	PFNA (Surrogate Recovery)
PFDA (Surrogate Recovery) % 98 93 NR70	PFDA (Surrogate Recovery)
PFUdA (Surrogate Recovery) % 101 93 NR70	PFUdA (Surrogate Recovery)
PFDoA (Surrogate Recovery) % 84 79 NR70	PFDoA (Surrogate Recovery)
PFTeDA (Surrogate Recovery) % 85 80 NR70	PFTeDA (Surrogate Recovery)
PFHxDA (Surrogate Recovery) % 93 98 NR70	PFHxDA (Surrogate Recovery)
FOUEA (Surrogate Recovery) % 97 102 NR70	FOUEA (Surrogate Recovery)
PFBS (Surrogate Recovery)   %   96   98   NR70	PFBS (Surrogate Recovery)
PFHxS (Surrogate Recovery)%102105NR70	PFHxS (Surrogate Recovery)
PFOS (Surrogate Recovery)%95108NR70	PFOS (Surrogate Recovery)
PFOSA (Surrogate Recovery) % 76 62 NR70	PFOSA (Surrogate Recovery)
N-MeFOSA (Surrogate Recovery)% 50 64 NR70	N-MeFOSA (Surrogate Recovery
N-EtFOSA (Surrogate Recovery) % 48 65 NR70	N-EtFOSA (Surrogate Recovery)
N-MeFOSAA (Surrogate Recover) 96 87 NR70	N-MeFOSAA (Surrogate Recove
N-EtFOSAA (Surrogate Recovery) 72 85 NR70	N-EtFOSAA (Surrogate Recover
N-MeFOSE (Surrogate Recovery)% 65 66 NR70	N-MeFOSE (Surrogate Recovery
N-EtFOSE (Surrogate Recovery) % 49 52 NR70	N-EtFOSE (Surrogate Recovery)
4:2 FTS (Surrogate Recovery) % 106 136 NR70	4:2 FTS (Surrogate Recovery)
6:2 FTS (Surrogate Recovery) % 152 230 NR70	6:2 FTS (Surrogate Recovery)
8:2 FTS (Surrogate Recovery) % 80 71 NR70	8:2 FTS (Surrogate Recovery)
8:2 diPAP (Surrogate Recovery) % 39 56 NR70	8:2 diPAP (Surrogate Recovery)
Dates	Dates
Date extracted 26-NOV-2018 26-NOV-2018	Date extracted
Date analysed 27-NOV-2018 27-NOV-2018	Date analysed

N18/032151 to N18/032152:

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

Page: 3 of 4 Report No. RN1215175

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects.

GSL. 0

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-NOV-2018

Lab Reg No.		N18/032151	N18/032152		
Date Sampled		15-NOV-2018	15-NOV-2018		
Sample Reference		Р9	QA01		
	Units				Method
Miscellaneous				_	
Dissolved Solids - Total	mg/L	2060	1940		NW_B10A

Wei Huang, Analyst Inorganics - NSW Accreditation No. 198

27-NOV-2018



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

This Report supersedes reports: RN1215146 RN1215173

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

Page: 4 of 4 Report No. RN1215175



### Australian Government

**National Measurement Institute** 

### **QUALITY ASSURANCE REPORT**

NMI QA Report No:	GHD15/18	1116			Sample Matri	<b>x</b> :	liquid	
Analyte	Method	LOR	Blank	San	nple Duplicates		Re	coveries
				Sample	Duplicate	RPD	LCS	Matri
		ug/L	ug/L	ug/L	ug/L	%	%	
PFBA (375-22-4)	NR70	0.005	<0.005	NA	NA	NA	106	1
PFPeA (2706-90-3)	NR70	0.002	<0.002	NA	NA	NA	98	1
PFHxA (307-24-4)	NR70	0.001	<0.001	NA	NA	NA	101	1
PFHpA (375-85-9)	NR70	0.001	<0.001	NA	NA	NA	98	1
PFOA (335-67-1)	NR70	0.001	<0.001	NA	NA	NA	107	1
PFNA (375-95-1)	NR70	0.001	<0.001	NA	NA	NA	99	1
PFDA (335-76-2)	NR70	0.001	<0.001	NA	NA	NA	91	1
PFUdA (2058-94-8)	NR70	0.001	<0.001	NA	NA	NA	92	1
PFDoA (307-55-1)	NR70	0.001	<0.001	NA	NA	NA	98	1
PFTrDA (72629-94-8)	NR70	0.002	<0.002	NA	NA	NA	102	1
PFTeDA (376-06-7)	NR70	0.002	<0.002	NA	NA	NA	103	1
PFHxDA (67905-19-5)	NR70	0.002	<0.002	NA	NA	NA	100	1
PFODA (16517-11-6)	NR70	0.005	<0.005	NA	NA	NA	96	1
FOUEA (70887-84-2)	NR70	0.001	<0.001	NA	NA	NA	102	1
PFBS (375-73-5)	NR70	0.001	<0.001	NA	NA	NA	94	1
PFPeS (2706-91-4)	NR70	0.001	<0.001	NA	NA	NA	93	1
PFHxS (355-46-4)	NR70	0.001	<0.001	NA	NA	NA	102	1
PFHpS (375-92-8)	NR70	0.001	<0.001	NA	NA	NA	102	1
PFOS (1763-23-1)	NR70	0.002	<0.002	NA	NA	NA	93	1
PFNS (68259-12-1)	NR70	0.001	<0.001	NA	NA	NA	87	1
PFDS (335-77-3)	NR70	0.001	<0.001	NA	NA	NA	82	1
PFOSA (754-91-6)	NR70	0.001	<0.001	NA	NA	NA	101	1
N-MeFOSA (31506-32-8)	NR70	0.002	<0.002	NA	NA	NA	100	1
N-EtFOSA (4151-50-2)	NR70	0.002	<0.002	NA	NA	NA	95	1
N-MeFOSAA (2355-31-9)	NR70	0.002	<0.002	NA	NA	NA	96	1
N-EtFOSAA(2991-50-6)	NR70	0.002	<0.002	NA	NA	NA	104	1
N-MeFOSE (24448-09-7)	NR70	0.005	<0.005	NA	NA	NA	103	1
N-EtFOSE (1691-99-2)	NR70	0.005	<0.005	NA	NA	NA	107	
4:2 FTS (757124-72-4)	NR70	0.001	<0.001	NA	NA	NA	100	1
6:2 FTS (27619-97-2)	NR70	0.001	<0.001	NA	NA	NA	102	1
8:2 FTS (39108-34-4)	NR70	0.001	<0.001	NA	NA	NA	108	1
10:2 FTS (120226-60-0)	NR70	0.001	<0.001	NA	NA	NA	100	1
8:2 diPAP (678-41-1)	NR70	0.002	< 0.002	NA	NA	NA	100	1

Results expressed in percentage (%) or ug/L wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Slu

Danny Slee **Organics Manager, NMI-North Ryde** 27/11/2018

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Matrix Spike % NA NA NA NA

> NA NA

> NA

NA

NA NA NA

NA

NA

NA NA NA

NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

NA

**Client:** 

GHD PTY LTD



Australian Government

Department of Industry, Innovation and Science

# National Measurement Institute



### **REPORT OF ANALYSIS**

			Page: 1 of 9			
			Report No. RN1217346			
Client :	GHD PTY LTD	Job No.	: GHD15/181210			
	LEVEL 4, 211 VICTORIA SQUARE	Quote No.	: QT-02018			
	ADELAIDE SA 5000	Order No.	:			
		Date Received	: 10-DEC-2018			
Attention :	DILARA VALIFF	Sampled By	: CLIENT			
Project Name :						
Your Client Server	vices Manager :	Phone	: (02) 94490161			
Lab Reg No.	Sample Ref	Sample Description				
N18/035004	P34	WATER PARAFIELD AIRPORT GROUNDWATER				
		INVESTIGATION PROJECT NUMBER	3319051			
N18/035005	P35	WATER PARAFIELD AIRPORT GROUNDWATER				
		3319051				
N18/035006	P36	WATER PARAFIELD AIRPORT GROUNDWATER				
		INVESTIGATION PROJECT NUMBER	3319051			
N18/035007	P37	NDWATER				
		INVESTIGATION PROJECT NUMBER	3319051			

Lab Reg No.		N18/035004	N18/035005	N18/035006	N18/035007			
Date Sampled		06-DEC-2018	06-DEC-2018	06-DEC-2018	06-DEC-2018	-		
Sample Reference		P34	P35	P36	P37	-		
	Units					Method		
Perfluoronated Compounds								
PFBA (375-22-4)	ug/L	< 0.005	0.0075	0.017	< 0.005	NR70		
PFPeA (2706-90-3)	ug/L	0.0024	< 0.002	0.019	< 0.002	NR70		
PFHxA (307-24-4)	ug/L	0.015	0.0028	0.021	0.0037	NR70		
PFHpA (375-85-9)	ug/L	0.0014	0.0014	0.012	0.0025	NR70		
PFOA (335-67-1)	ug/L	0.0023	0.0063	0.024	0.0028	NR70		
PFNA (375-95-1)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70		
PFDA (335-76-2)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70		
PFUdA (2058-94-8)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		
PFDoA (307-55-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70		
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70		
PFHxDA (67905-19-5)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70		
PFODA (16517-11-6)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70		
FOUEA (70887-84-2)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		
PFBS (375-73-5)	ug/L	0.014	0.0042	0.015	0.0052	NR70		
PFPeS (2706-91-4)	ug/L	0.014	0.0030	0.0078	0.0043	NR70		
PFHxS (355-46-4)	ug/L	0.12	0.027	0.085	0.037	NR70		
PFHpS (375-92-8)	ug/L	0.0017	< 0.001	0.0013	< 0.001	NR70		
PFOS (1763-23-1)	ug/L	0.030	0.037	0.055	0.043	NR70		
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		
PFDS (335-77-3)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		
PFOSA (754-91-6)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70		

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 2 of 9 Report No. RN1217346

Lab Reg No.		N18/035004	N18/035005	N18/035006	N18/035007	
Date Sampled		06-DEC-2018	06-DEC-2018	06-DEC-2018	06-DEC-2018	
Sample Reference		P34	P35	P36	P37	
	Units					Method
Perfluoronated Compounds		•				
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124-72-4)	ug/L	< 0.001	<0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-97-2)	ug/L	0.048	0.044	0.013	0.086	NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70
8:2 diPAP (678-41-1)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70
PFBA (Surrogate Recovery)	%	93	101	95	98	NR70
PFPeA (Surrogate Recovery)	%	86	112	98	111	NR70
PFHxA (Surrogate Recovery)	%	94	98	105	84	NR70
PFHpA (Surrogate Recovery)	%	97	101	106	96	NR70
PFOA (Surrogate Recovery)	%	98	99	106	91	NR70
PFNA (Surrogate Recovery)	%	76	91	94	84	NR70
PFDA (Surrogate Recovery)	%	77	92	99	80	NR70
PFUdA (Surrogate Recovery)	%	61	76	77	70	NR70
PFDoA (Surrogate Recovery)	%	45	73	59	44	NR70
PFTeDA (Surrogate Recovery)	%	49	66	54	40	NR70
PFHxDA (Surrogate Recovery)	%	78	88	69	45	NR70
FOUEA (Surrogate Recovery)	%	83	89	96	81	NR70
PFBS (Surrogate Recovery)	%	108	105	118	100	NR70
PFHxS (Surrogate Recovery)	%	108	107	109	99	NR70
PFOS (Surrogate Recovery)	%	110	98	101	89	NR70
PFOSA (Surrogate Recovery)	%	62	71	73	57	NR70
N-MeFOSA (Surrogate Recovery	1%	54	60	58	36	NR70
N-EtFOSA (Surrogate Recovery)	%	43	59	54	38	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	48	72	65	50	NR70
N-EtFOSAA (Surrogate Recover	<b>v%</b>	44	78	58	40	NR70
N-MeFOSE (Surrogate Recovery	%	63	55	66	52	NR70
N-EtFOSE (Surrogate Recovery)	%	50	59	54	41	NR70
4:2 FTS (Surrogate Recovery)	%	93	131	135	150	NR70
6:2 FTS (Surrogate Recovery)	%	89	89	88	88	NR70
8:2 FTS (Surrogate Recovery)	%	54	67	66	78	NR70
8:2 diPAP (Surrogate Recovery)	%	55	66	54	31	NR70
Dates						
Date extracted		13-DEC-2018	13-DEC-2018	13-DEC-2018	13-DEC-2018	
Date analysed		13-DEC-2018	13-DEC-2018	13-DEC-2018	13-DEC-2018	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

N18/035004

to N18/035012: PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects.

All

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

17-DEC-2018

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 3 of 9 Report No. RN1217346
					Benort	Page: 4 of 9 No BN1217346	
Client : GHD PTY LTD				Job No.	: GHD15/	181210	
LEVEL 4, 211	VICTORIA SQUA	RE		Quote No. : QT-02018			
ADELAIDE SA	5000			Order No.	:		
				Date Rece	ived : 10-DEC-	2018	
Attention : DILARA VALIF		Sampled B	y : CLIENT				
Project Name :				-	-		
Your Client Services Manager	:			Phone	: (02) 944	490161	
Lab Reg No. Sample Ref	F		Sample Descrip	tion			
N18/035008 P38			WATER PARAFI	eld airport g	ROUNDWATER		
			INVESTIGATION	I PROJECT NUM	IBER 3319051		
N18/035009 P39			WATER PARAFI	ELD AIRPORT G	ROUNDWATER		
			INVESTIGATION	I PROJECT NUN	IBER 3319051		
N18/035010 QA01			WATER PARAFI	ELD AIRPORT G	ROUNDWATER		
			INVESTIGATION	I PROJECT NUN	IBER 3319051		
N18/035011 QA02			WATER PARAFI	ELD AIRPORT G	ROUNDWATER		
			INVESTIGATION	I PROJECT NUN	IBER 3319051		
<b></b>	1	1	<b>.</b>	1	1	<b>i</b>	
Lab Reg No.	-	N18/035008	N18/035009	N18/035010	N18/035011	_	
Date Sampled	-	06-DEC-2018	06-DEC-2018	06-DEC-2018	06-DEC-2018	_	
Sample Reference		P38	P39	QA01	QA02		
	Units					Method	
Perfluoronated Compounds		0.010	0.010	0.0070	<0.00F	1070	
PFBA (375-22-4)	ug/L	0.013	0.010	0.0078	< 0.005	NR70	
PFPeA (2706-90-3)	ug/L	0.0023	0.021	< 0.002	0.0025		
PFHXA (307-24-4)	ug/L	0.0035	0.029	0.0029	0.014		
PEOA (335-67-1)	ug/L	0.0022	0.0000	0.0014	0.0011		
PENA (375-95-1)	ug/L	<pre>0.0041</pre>	< 0.0030	< 0.0037	<pre>0.0021</pre>	NR70	
PEDA (335-76-2)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70	
PEUdA (2058-94-8)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NB70	
$PED_{0}A$ (307-55-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NB70	
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NB70	
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70	
PFHxDA (67905-19-5)	ua/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70	
PFODA (16517-11-6)	ua/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70	
FOUEA (70887-84-2)	ua/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70	
PFBS (375-73-5)	ug/L	0.011	0.0048	0.0038	0.014	NR70	
PFPeS (2706-91-4)	ug/L	0.0027	0.0015	0.0029	0.013	NR70	
PFHxS (355-46-4)	ug/L	0.019	0.0094	0.026	0.12	NR70	
PFHpS (375-92-8)	ug/L	< 0.001	< 0.001	< 0.001	0.0016	NR70	
PFOS (1763-23-1)	ug/L	0.013	0.0035	0.037	0.031	NR70	
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70	
PFDS (335-77-3)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70	
PFOSA (754-91-6)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 5 of 9 Report No. RN1217346

Lab Reg No.		N18/035008	N18/035009	N18/035010	N18/035011	
Date Sampled		06-DEC-2018	06-DEC-2018	06-DEC-2018	06-DEC-2018	
Sample Reference		P38	P39	QA01	QA02	
	Units					Method
Perfluoronated Compounds		•				
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124-72-4)	ug/L	< 0.001	<0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-97-2)	ug/L	0.093	0.13	0.040	0.036	NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001	<0.001	< 0.001	< 0.001	NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
8:2 diPAP (678-41-1)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70
PFBA (Surrogate Recovery)	%	98	99	93	99	NR70
PFPeA (Surrogate Recovery)	%	159	195	102	89	NR70
PFHxA (Surrogate Recovery)	%	75	78	89	97	NR70
PFHpA (Surrogate Recovery)	%	90	86	95	100	NR70
PFOA (Surrogate Recovery)	%	95	94	97	104	NR70
PFNA (Surrogate Recovery)	%	88	85	88	84	NR70
PFDA (Surrogate Recovery)	%	86	78	91	67	NR70
PFUdA (Surrogate Recovery)	%	74	51	81	64	NR70
PFDoA (Surrogate Recovery)	%	48	42	68	52	NR70
PFTeDA (Surrogate Recovery)	%	35	39	70	53	NR70
PFHxDA (Surrogate Recovery)	%	59	46	86	73	NR70
FOUEA (Surrogate Recovery)	%	92	78	80	78	NR70
PFBS (Surrogate Recovery)	%	81	83	98	107	NR70
PFHxS (Surrogate Recovery)	%	96	91	95	103	NR70
PFOS (Surrogate Recovery)	%	93	88	96	96	NR70
PFOSA (Surrogate Recovery)	%	51	51	78	61	NR70
N-MeFOSA (Surrogate Recovery	)%	38	31	60	57	NR70
N-EtFOSA (Surrogate Recovery)	%	42	38	57	51	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄ð	73	50	76	53	NR70
N-EtFOSAA (Surrogate Recover	1%	56	43	64	55	NR70
N-MeFOSE (Surrogate Recovery	%	41	39	64	70	NR70
N-EtFOSE (Surrogate Recovery)	%	33	37	63	57	NR70
4:2 FTS (Surrogate Recovery)	%	182	149	123	101	NR70
6:2 FTS (Surrogate Recovery)	%	101	102	80	88	NR70
8:2 FTS (Surrogate Recovery)	%	80	51	64	55	NR70
8:2 diPAP (Surrogate Recovery)	%	40	30	63	54	NR70
Dates		•		•	•	•
Date extracted		13-DEC-2018	13-DEC-2018	13-DEC-2018	13-DEC-2018	
Date analysed		13-DEC-2018	13-DEC-2018	13-DEC-2018	13-DEC-2018	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 6 of 9

Report No. RN1217346

Lab Reg No.		N18/035008	N18/035009	N18/035010	N18/035011	
Date Sampled		06-DEC-2018	06-DEC-2018	06-DEC-2018	06-DEC-2018	
Sample Reference		P38	P39	QA01	QA02	
	Units					Method

All

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

17-DEC-2018

						i agoi / oi o	
					Report	No. RN1217346	
Client : GHD PTY LTI	C			Job No.	Job No. : GHD15/181210		
LEVEL 4, 211	I VICTORIA S	QUARE		Quote No.	Quote No. : QT-02018		
ADELAIDE S	A 5000			Order No.	:		
				Date Receive	Date Received : 10-DEC-2018		
Attention : DILARA VALI	FF			Sampled By	: CLIENT		
Project Name :							
Your Client Services Manager	:			Phone	: (02) 944	490161	
Lab Reg No. Sample R	ef		Sample Descrip	tion			
N18/035012 RB01	WATER PARAFIELD AIRPORT GROUNDWATER						
			INVESTIGATION	N PROJECT NUMBE	R 3319051		
						-	
Lab Reg No.		N18/035012					
Date Sampled		06-DEC-2018					
Sample Reference		RB01					
	Units					Method	
Perfluoronated Compounds							
PFBA (375-22-4)	ug/L	< 0.005				NR70	
PFPeA (2706-90-3)	ug/L	< 0.002				NR70	
PFHxA (307-24-4)	ug/L	< 0.001				NR70	
PFHpA (375-85-9)	ug/L	< 0.001				NR70	
PFOA (335-67-1)	ug/L	< 0.001				NR70	
PFNA (375-95-1)	ug/L	< 0.001				NR70	
PFDA (335-76-2)	ug/L	< 0.001				NR70	
PFUdA (2058-94-8)	ug/L	< 0.001				NR70	

< 0.001

< 0.002

< 0.002

< 0.002

< 0.005

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

< 0.002

< 0.001

< 0.001

< 0.001

< 0.002

< 0.002

< 0.002

< 0.002

< 0.005

< 0.005

ug/L

PFDoA (307-55-1)

PFTeDA (376-06-7)

PFTrDA (72629-94-8)

PFHxDA (67905-19-5)

PFODA (16517-11-6)

FOUEA (70887-84-2)

PFBS (375-73-5)

PFPeS (2706-91-4)

PFHxS (355-46-4)

PFHpS (375-92-8)

PFOS (1763-23-1)

PFDS (335-77-3)

PFOSA (754-91-6)

N-MeFOSA (31506-32-8)

N-MeFOSAA (2355-31-9)

N-EtFOSAA(2991-50-6)

N-MeFOSE (24448-09-7)

N-EtFOSE (1691-99-2)

N-EtFOSA (4151-50-2)

PFNS (68259-12-1)

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

Page: 7 of 9

NR70

NR70

NR70

NR70

NR70

**NR70** 

**NR70** 

NR70

NR70

NR70

**NR70** 

NR70

NR70 NR70

NR70

NR70

NR70

NR70

NR70

NR70

Page: 8 of 9 Report No. RN1217346

Lab Reg No.		N18/035012		
Date Sampled		06-DEC-2018		
Sample Reference		RB01		
	Units			Method
Perfluoronated Compounds				
4:2 FTS (757124-72-4)	ug/L	< 0.001		NR70
6:2 FTS (27619-97-2)	ug/L	< 0.001		NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001		NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001		NR70
8:2 diPAP (678-41-1)	ug/L	< 0.002		NR70
PFBA (Surrogate Recovery)	%	94		NR70
PFPeA (Surrogate Recovery)	%	75		NR70
PFHxA (Surrogate Recovery)	%	94		NR70
PFHpA (Surrogate Recovery)	%	97		NR70
PFOA (Surrogate Recovery)	%	96		NR70
PFNA (Surrogate Recovery)	%	88		NR70
PFDA (Surrogate Recovery)	%	81		NR70
PFUdA (Surrogate Recovery)	%	69		NR70
PFDoA (Surrogate Recovery)	%	66		NR70
PFTeDA (Surrogate Recovery)	%	63		NR70
PFHxDA (Surrogate Recovery)	%	80		NR70
FOUEA (Surrogate Recovery)	%	73		NR70
PFBS (Surrogate Recovery)	%	101		NR70
PFHxS (Surrogate Recovery)	%	104		NR70
PFOS (Surrogate Recovery)	%	89		NR70
PFOSA (Surrogate Recovery)	%	73		NR70
N-MeFOSA (Surrogate Recovery	1%	60		NR70
N-EtFOSA (Surrogate Recovery)	%	67		NR70
N-MeFOSAA (Surrogate Recove	r94	55		NR70
N-EtFOSAA (Surrogate Recover	<b>v%</b>	67		NR70
N-MeFOSE (Surrogate Recovery	/%	65		NR70
N-EtFOSE (Surrogate Recovery)	%	63		NR70
4:2 FTS (Surrogate Recovery)	%	83		NR70
6:2 FTS (Surrogate Recovery)	%	82		NR70
8:2 FTS (Surrogate Recovery)	%	67		NR70
8:2 diPAP (Surrogate Recovery)	%	55		 NR70
Dates				 
Date extracted		13-DEC-2018		
Date analysed		13-DEC-2018		

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 9 of 9

				Report N	No. RN1217346
Lab Reg No.		N18/035012			
Date Sampled		06-DEC-2018			
Sample Reference		RB01			
	Units				Method

OSA

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

17-DEC-2018



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1217287 RN1217304

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au



#### **Australian Government**

National Measurement Institute

# Page 1 of 1

## QUALITY ASSURANCE REPORT

Client:	GHD PTY	LTD							
NMI QA Report No:	GHD15/18	31210			Sample Matrix:			Liquid	
Analyte	Method	LOR	Blank	Sample Duplicates			Recoveries		
				Sample	Duplicate	RPD	LCS	Matrix Spike	
		ug/L	ug/L	ug/L	ug/L	%	%	%	
PFBA (375-22-4)	NR70	0.005	<0.005	NA	NA	NA	111	NA	
PFPeA (2706-90-3)	NR70	0.002	<0.000	NA	NA	NA	103	NA	
PFHxA (307-24-4)	NR70	0.001	<0.001	NA	NA	NA	98	NA	
PFHpA (375-85-9)	NR70	0.001	< 0.001	NA	NA	NA	102	NA	
PFOA (335-67-1)	NR70	0.001	< 0.001	NA	NA	NA	106	NA	
PFNA (375-95-1)	NR70	0.001	< 0.001	NA	NA	NA	92	NA	
PFDA (335-76-2)	NR70	0.001	< 0.001	NA	NA	NA	90	NA	
PFUdA (2058-94-8)	NR70	0.001	< 0.001	NA	NA	NA	104	NA	
PFDoA (307-55-1)	NR70	0.001	< 0.001	NA	NA	NA	107	NA	
PFTrDA (72629-94-8)	NR70	0.002	<0.002	NA	NA	NA	102	NA	
PFTeDA (376-06-7)	NR70	0.002	<0.002	NA	NA	NA	96	NA	
PFHxDA (67905-19-5)	NR70	0.002	<0.002	NA	NA	NA	104	NA	
PFODA (16517-11-6)	NR70	0.005	<0.005	NA	NA	NA	83	NA	
FOUEA (70887-84-2)	NR70	0.001	<0.001	NA	NA	NA	107	NA	
PFBS (375-73-5)	NR70	0.001	<0.001	NA	NA	NA	104	NA	
PFPeS (2706-91-4)	NR70	0.001	<0.001	NA	NA	NA	104	NA	
PFHxS (355-46-4)	NR70	0.001	<0.001	NA	NA	NA	95	NA	
PFHpS (375-92-8)	NR70	0.001	<0.001	NA	NA	NA	100	NA	
PFOS (1763-23-1)	NR70	0.002	<0.002	NA	NA	NA	104	NA	
PFNS (68259-12-1)	NR70	0.001	<0.001	NA	NA	NA	98	NA	
PFDS (335-77-3)	NR70	0.001	<0.001	NA	NA	NA	90	NA	
PFOSA (754-91-6)	NR70	0.001	<0.001	NA	NA	NA	104	NA	
N-MeFOSA (31506-32-8)	NR70	0.002	< 0.002	NA	NA	NA	108	NA	
N-EtFOSA (4151-50-2)	NR70	0.002	< 0.002	NA	NA	NA	94	NA	
N-MeFOSAA (2355-31-9)	NR70	0.002	<0.002	NA	NA	NA	102	NA	
N-EtFOSAA(2991-50-6)	NR70	0.002	<0.002	NA	NA	NA	100	NA	
N-MeFOSE (24448-09-7)	NR70	0.005	<0.005	NA	NA	NA	116	NA	
N-EtFOSE (1691-99-2)	NR70	0.005	<0.005	NA	NA	NA	98	NA	
4:2 FTS (757124-72-4)	NR70	0.001	<0.001	NA	NA	NA	101	NA	
6:2 FTS (27619-97-2)	NR70	0.001	< 0.001	NA	NA	NA	102	NA	
8:2 FTS (39108-34-4)	NR70	0.001	< 0.001	NA	NA	NA	107	NA	
10:2 FTS (120226-60-0)	NR70	0.001	< 0.001	NA	NA	NA	86	NA	
8:2 diPAP (678-41-1)	NR70	0.002	< 0.002	NA	NA	NA	103	NA	

Results expressed in percentage (%) or ug/L wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Alu 9

Danny Slee Organics Manager, NMI-North Ryde 14/12/2018



Australian Government

Department of Industry, Innovation and Science

## National Measurement Institute



## **REPORT OF ANALYSIS**

				Page: 1 of 6
				Report No. RN1223294
Client	: GHD PTY LTD		Job No.	: GHD15/190213
	LEVEL 4, 211 VICTORIA SQUARE		Quote No.	: QT-02018
	ADELAIDE SA 5000		Order No.	:
			Date Received	: 13-FEB-2019
Attention	: DILARA VALIFF		Sampled By	: CLIENT
Project Name	:			
Your Client Se	ervices Manager :		Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description		
N19/003683	P42	WATER 7/02/2019		
N19/003684	P43	WATER 7/02/2019		
N19/003685	P41	WATER 7/02/2019		
N19/003686	P40	WATER 7/02/2019		

Lab Reg No.		N19/003683	N19/003684	N19/003685	N19/003686	
Date Sampled		07-FEB-2019	07-FEB-2019	07-FEB-2019	07-FEB-2019	
Sample Reference		P42	P43	P41	P40	
	Units					Method
PFAS (per-and poly-fluoroalkyl s	substances)		•	•	•	
PFBA (375-22-4)	ug/L	0.026	0.0071	0.0084	0.018	NR70
PFPeA (2706-90-3)	ug/L	0.0079	< 0.002	0.0076	0.024	NR70
PFHxA (307-24-4)	ug/L	0.014	0.0047	0.010	0.035	NR70
PFHpA (375-85-9)	ug/L	0.0037	< 0.002	0.0036	0.013	NR70
PFOA (335-67-1)	ug/L	0.0055	0.0031	0.0048	0.030	NR70
PFNA (375-95-1)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFDA (335-76-2)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFUdA (2058-94-8)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDoA (307-55-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFHxDA (67905-19-5)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFODA (16517-11-6)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFBS (375-73-5)	ug/L	0.0074	0.0039	0.0092	0.0037	NR70
PFPeS (2706-91-4)	ug/L	0.0072	0.0040	0.0095	0.0029	NR70
PFHxS (355-46-4)	ug/L	0.075	0.050	0.074	0.037	NR70
PFHpS (375-92-8)	ug/L	< 0.002	0.0033	< 0.002	< 0.002	NR70
PFOS (1763-23-1)	ug/L	0.043	0.24	0.032	0.020	NR70
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDS (335-77-3)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFOSA (754-91-6)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 2 of 6 Report No. RN1223294

Lab Reg No.		N19/003683	N19/003684	N19/003685	N19/003686	
Date Sampled		07-FEB-2019	07-FEB-2019	07-FEB-2019	07-FEB-2019	
Sample Reference		P42	P43	P41	P40	_
	Units					Method
PFAS (per-and poly-fluoroalkyl s	ubstances)				1	L
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124-72-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-97-2)	ug/L	0.0043	0.13	0.033	0.020	NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
8:2 diPAP (678-41-1)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFBA (Surrogate Recovery)	%	116	116	120	103	NR70
PFPeA (Surrogate Recovery)	%	125	107	100	119	NR70
PFHxA (Surrogate Recovery)	%	83	91	89	80	NR70
PFHpA (Surrogate Recovery)	%	101	120	115	100	NR70
PFOA (Surrogate Recovery)	%	101	114	101	102	NR70
PFNA (Surrogate Recovery)	%	127	121	90	103	NR70
PFDA (Surrogate Recovery)	%	110	99	84	85	NR70
PFUdA (Surrogate Recovery)	%	97	98	80	101	NR70
PFDoA (Surrogate Recovery)	%	79	94	70	77	NR70
PFTeDA (Surrogate Recovery)	%	68	93	53	98	NR70
PFHxDA (Surrogate Recovery)	%	60	42	26	47	NR70
FOUEA (Surrogate Recovery)	%	80	83	83	63	NR70
PFBS (Surrogate Recovery)	%	105	104	92	95	NR70
PFHxS (Surrogate Recovery)	%	99	102	99	93	NR70
PFOS (Surrogate Recovery)	%	116	106	95	104	NR70
PFOSA (Surrogate Recovery)	%	80	98	80	81	NR70
N-MeFOSA (Surrogate Recovery	1%	47	61	30	27	NR70
N-EtFOSA (Surrogate Recovery)	%	50	66	42	28	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	50	79	52	71	NR70
N-EtFOSAA (Surrogate Recover	<b>v%</b>	71	67	47	54	NR70
N-MeFOSE (Surrogate Recovery	%	73	87	60	77	NR70
N-EtFOSE (Surrogate Recovery)	%	65	86	74	97	NR70
4:2 FTS (Surrogate Recovery)	%	72	73	61	69	NR70
6:2 FTS (Surrogate Recovery)	%	94	125	94	83	NR70
8:2 FTS (Surrogate Recovery)	%	70	88	76	82	NR70
8:2 diPAP (Surrogate Recovery)	%	88	96	24	70	NR70
Dates						
Date extracted		14-FEB-2019	14-FEB-2019	14-FEB-2019	14-FEB-2019	
Date analysed		14-FEB-2019	14-FEB-2019	14-FEB-2019	14-FEB-2019	

N19/003683

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 3 of 6 Report No. RN1223294

N19/003690: PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects.

All. 0

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

22-FEB-2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

to

				Page: 4 of 6
				Report No. RN1223294
Client	: GHD PTY LTD		Job No.	: GHD15/190213
	LEVEL 4, 211 VICTORIA S	SQUARE	Quote No.	: QT-02018
	ADELAIDE SA 5000		Order No.	:
			Date Received	: 13-FEB-2019
Attention	: DILARA VALIFF		Sampled By	: CLIENT
Project Name	:			
Your Client Se	ervices Manager :		Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description	on	
N19/003687	P44	WATER 7/02/207	19	
N19/003688	RB01	WATER 7/02/207	19	
N19/003689	QA01	WATER 7/02/207	19	
N19/003690	QA02	WATER 7/02/207	19	

Lab Reg No.		N19/003687	N19/003688	N19/003689	N19/003690	
Date Sampled		07-FEB-2019	07-FEB-2019	07-FEB-2019	07-FEB-2019	
Sample Reference		P44	RB01	QA01	QA02	
	Units					Method
PFAS (per-and poly-fluoroalkyl s	ubstances)					
PFBA (375-22-4)	ug/L	0.029	< 0.005	0.019	0.0072	NR70
PFPeA (2706-90-3)	ug/L	0.038	< 0.002	0.0076	0.0086	NR70
PFHxA (307-24-4)	ug/L	0.26	< 0.001	0.011	0.012	NR70
PFHpA (375-85-9)	ug/L	0.033	< 0.002	0.0037	0.0035	NR70
PFOA (335-67-1)	ug/L	0.051	< 0.001	0.0052	0.0052	NR70
PFNA (375-95-1)	ug/L	< 0.002	< 0.002	<0.002	< 0.002	NR70
PFDA (335-76-2)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70
PFUdA (2058-94-8)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDoA (307-55-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFHxDA (67905-19-5)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70
PFODA (16517-11-6)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70
PFBS (375-73-5)	ug/L	0.11	<0.001	0.0084	0.0077	NR70
PFPeS (2706-91-4)	ug/L	0.16	<0.001	0.0078	0.0075	NR70
PFHxS (355-46-4)	ug/L	1.3	<0.001	0.078	0.074	NR70
PFHpS (375-92-8)	ug/L	0.013	<0.002	< 0.002	< 0.002	NR70
PFOS (1763-23-1)	ug/L	0.072	< 0.002	0.045	0.044	NR70
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDS (335-77-3)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFOSA (754-91-6)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	ug/L	<0.002	<0.002	<0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	ug/L	<0.002	<0.002	<0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 5 of 6 Report No. RN1223294

Lab Reg No.		N19/003687	N19/003688	N19/003689	N19/003690	
Date Sampled		07-FEB-2019	07-FEB-2019	07-FEB-2019	07-FEB-2019	
Sample Reference		P44	RB01	QA01	QA02	-
-	Units					Method
PFAS (per-and poly-fluoroalkyl s	substances)				1	
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124-72-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-97-2)	ug/L	0.017	< 0.002	0.0043	0.0037	NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
8:2 diPAP (678-41-1)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
PFBA (Surrogate Recovery)	%	95	107	99	96	NR70
PFPeA (Surrogate Recovery)	%	91	127	115	100	NR70
PFHxA (Surrogate Recovery)	%	82	80	91	78	NR70
PFHpA (Surrogate Recovery)	%	105	93	96	101	NR70
PFOA (Surrogate Recovery)	%	106	96	103	92	NR70
PFNA (Surrogate Recovery)	%	98	136	74	108	NR70
PFDA (Surrogate Recovery)	%	87	123	73	86	NR70
PFUdA (Surrogate Recovery)	%	81	110	65	97	NR70
PFDoA (Surrogate Recovery)	%	62	133	60	79	NR70
PFTeDA (Surrogate Recovery)	%	72	166	52	54	NR70
PFHxDA (Surrogate Recovery)	%	54	82	68	38	NR70
FOUEA (Surrogate Recovery)	%	72	77	82	77	NR70
PFBS (Surrogate Recovery)	%	93	96	96	86	NR70
PFHxS (Surrogate Recovery)	%	80	84	96	90	NR70
PFOS (Surrogate Recovery)	%	98	104	107	99	NR70
PFOSA (Surrogate Recovery)	%	67	93	55	87	NR70
N-MeFOSA (Surrogate Recovery	1%	44	61	40	37	NR70
N-EtFOSA (Surrogate Recovery)	%	38	63	38	35	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	46	111	35	74	NR70
N-EtFOSAA (Surrogate Recover	<b>v%</b>	43	84	50	53	NR70
N-MeFOSE (Surrogate Recovery	/%	57	62	55	57	NR70
N-EtFOSE (Surrogate Recovery)	%	66	88	57	72	NR70
4:2 FTS (Surrogate Recovery)	%	70	69	71	66	NR70
6:2 FTS (Surrogate Recovery)	%	92	87	89	84	NR70
8:2 FTS (Surrogate Recovery)	%	94	122	62	90	NR70
8:2 diPAP (Surrogate Recovery)	%	91	101	98	38	NR70
Dates						
Date extracted		14-FEB-2019	14-FEB-2019	14-FEB-2019	14-FEB-2019	
Date analysed		14-FEB-2019	14-FEB-2019	14-FEB-2019	14-FEB-2019	

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 6 of 6

ort No. RN122329	4
------------------	---

					Report N	No. RN1223294
Lab Reg No.		N19/003687	N19/003688	N19/003689	N19/003690	
Date Sampled		07-FEB-2019	07-FEB-2019	07-FEB-2019	07-FEB-2019	
Sample Reference		P44	RB01	QA01	QA02	
	Units					Method

oth

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

22-FEB-2019



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1223291

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au



#### **National Measurement Institute**

#### QUALITY ASSURANCE REPORT

Client:

GHD PTY LTD GHD15/190213

NMI QA Report No:

Liquid

Sample Matrix:

Analyte	Method	LOR	Blank	Sample Duplicates		Recoveries		
				Sample	Duplicate	RPD	LCS	Matrix Spike
		ug/L	ug/L	ug/Ĺ	ug/L	%	%	%
		0.005	.0.005				10.1	
PFBA (375-22-4)	NR70	0.005	<0.005	NA	NA	NA	121	NA
PFPeA (2706-90-3)	NR70	0.002	<0.002	NA	NA	NA	106	NA
PFHxA (307-24-4)	NR70	0.001	<0.001	NA	NA	NA	101	NA
PFHpA (375-85-9)	NR70	0.001	<0.001	NA	NA	NA	100	NA
PFOA (335-67-1)	NR70	0.001	<0.001	NA	NA	NA	103	NA
PFNA (375-95-1)	NR70	0.001	<0.001	NA	NA	NA	111	NA
PFDA (335-76-2)	NR70	0.001	<0.001	NA	NA	NA	102	NA
PFUdA (2058-94-8)	NR70	0.001	<0.001	NA	NA	NA	109	NA
PFDoA (307-55-1)	NR70	0.001	<0.001	NA	NA	NA	95	NA
PFTrDA (72629-94-8)	NR70	0.002	<0.002	NA	NA	NA	102	NA
PFTeDA (376-06-7)	NR70	0.002	<0.002	NA	NA	NA	102	NA
PFHxDA (67905-19-5)	NR70	0.002	<0.002	NA	NA	NA	113	NA
FOUEA (70887-84-2)	NR70	0.001	<0.001	NA	NA	NA	99	NA
PFBS (375-73-5)	NR70	0.001	<0.001	NA	NA	NA	102	NA
PFPeS (2706-91-4)	NR70	0.001	<0.001	NA	NA	NA	102	NA
PFHxS (355-46-4)	NR70	0.001	<0.001	NA	NA	NA	107	NA
PFHpS (375-92-8)	NR70	0.001	<0.001	NA	NA	NA	107	NA
PFOS (1763-23-1)	NR70	0.002	<0.002	NA	NA	NA	100	NA
PFNS (68259-12-1)	NR70	0.001	<0.001	NA	NA	NA	96	NA
PFDS (335-77-3)	NR70	0.001	<0.001	NA	NA	NA	95	NA
PFOSA (754-91-6)	NR70	0.001	<0.001	NA	NA	NA	100	NA
N-MeFOSA (31506-32-8)	NR70	0.002	<0.002	NA	NA	NA	98	NA
N-EtFOSA (4151-50-2)	NR70	0.002	<0.002	NA	NA	NA	95	NA
N-MeFOSAA (2355-31-9)	NR70	0.002	<0.002	NA	NA	NA	92	NA
N-EtFOSAA(2991-50-6)	NR70	0.002	<0.002	NA	NA	NA	101	NA
N-MeFOSE (24448-09-7)	NR70	0.005	<0.005	NA	NA	NA	102	NA
N-EtFOSE (1691-99-2)	NR70	0.005	<0.005	NA	NA	NA	64	NA
4:2 FTS (757124-72-4)	NR70	0.001	<0.001	NA	NA	NA	106	NA
6:2 FTS (27619-97-2)	NR70	0.001	<0.001	NA	NA	NA	114	NA
8:2 FTS (39108-34-4)	NR70	0.001	<0.001	NA	NA	NA	125	NA
10:2 FTS (120226-60-0)	NR70	0.001	<0.001	NA	NA	NA	77	NA
8:2 diPAP (678-41-1)	NR70	0.002	<0.002	NA	NA	NA	102	NA

Results expressed in percentage (%) or ug/L wherever appropriate. Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

agele

Danny Slee Organics Manager, NMI-North Ryde 21/02/2019



Australian Government

Department of Industry, Innovation and Science

## National Measurement Institute



## **REPORT OF ANALYSIS**

				Page: 1 of 17
				Report No. RN1226775
Client	: GHD PTY LTD		Job No.	: GHD15/190318
	LEVEL 4, 211 VICTORIA SQUARE		Quote No.	: QT-02018
	ADELAIDE SA 5000		Order No.	: 3319051
			Date Received	: 18-MAR-2019
Attention	: DILARA VALIFF		Sampled By	: CLIENT
Project Name	:			
Your Client S	ervices Manager :		Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description		
N19/006897	HA-0-0.1	SOIL 14-3-19		
N19/006898	HA-0.1-0.2	SOIL 14-3-19		

Lab Reg No.		N19/006897	N19/006898	
Date Sampled		14-MAR-2019	14-MAR-2019	
Sample Reference		HA-0-0.1	HA-0.1-0.2	
	Units			Method
PFAS (per-and poly-fluoroalkyl s	substances)			
PFBA (375-22-4)	mg/kg	< 0.002	0.0027	NR70
PFPeA (2706-90-3)	mg/kg	< 0.002	< 0.002	NR70
PFHxA (307-24-4)	mg/kg	< 0.001	< 0.001	NR70
PFHpA (375-85-9)	mg/kg	< 0.001	< 0.001	NR70
PFOA (335-67-1)	mg/kg	< 0.001	< 0.001	NR70
PFNA (375-95-1)	mg/kg	< 0.001	< 0.001	NR70
PFDA (335-76-2)	mg/kg	< 0.001	< 0.001	NR70
PFUdA (2058-94-8)	mg/kg	< 0.002	< 0.002	NR70
PFDoA (307-55-1)	mg/kg	< 0.002	< 0.002	NR70
PFTrDA (72629-94-8)	mg/kg	< 0.002	< 0.002	NR70
PFTeDA (376-06-7)	mg/kg	< 0.002	< 0.002	NR70
PFHxDA (67905-19-5)	mg/kg	< 0.002	< 0.002	NR70
PFODA (16517-11-6)	mg/kg	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	mg/kg	< 0.001	< 0.001	NR70
PFBS (375-73-5)	mg/kg	< 0.001	< 0.001	NR70
PFPeS (2706-91-4)	mg/kg	< 0.001	< 0.001	NR70
PFHxS (355-46-4)	mg/kg	< 0.001	< 0.001	NR70
PFHpS (375-92-8)	mg/kg	< 0.001	< 0.001	NR70
PFOS (1763-23-1)	mg/kg	< 0.002	< 0.002	NR70
PFNS (68259-12-1)	mg/kg	< 0.001	< 0.001	NR70
PFDS (335-77-3)	mg/kg	< 0.001	< 0.001	NR70
PFOSA (754-91-6)	mg/kg	< 0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	mg/kg	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	mg/kg	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	mg/kg	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	mg/kg	< 0.002	< 0.002	NR70
N-MeFOSE (24448-09-7)	mg/kg	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	mg/kg	< 0.005	< 0.005	NR70

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 2 of 17 Report No. RN1226775

Lab Reg No.		N19/006897	N19/006898		
Date Sampled		14-MAR-2019	14-MAR-2019		
Sample Reference		HA-0-0.1	HA-0.1-0.2		
	Units			N	Viethod
PFAS (per-and poly-fluoroalkyl s	ubstances)				
4:2 FTS (757124-72-4)	mg/kg	< 0.001	< 0.001	٩	NR70
6:2 FTS (27619-97-2)	mg/kg	< 0.001	< 0.001	٩	NR70
8:2 FTS (39108-34-4)	mg/kg	< 0.001	< 0.001	٩	NR70
10:2 FTS (120226-60-0)	mg/kg	< 0.002	< 0.002	٩	NR70
8:2 diPAP (678-41-1)	mg/kg	< 0.002	< 0.002	٩	NR70
PFBA (Surrogate Recovery)	%	105	107	٩	NR70
PFPeA (Surrogate Recovery)	%	95	98	١	NR70
PFHxA (Surrogate Recovery)	%	120	105	١	NR70
PFHpA (Surrogate Recovery)	%	122	121	١	NR70
PFOA (Surrogate Recovery)	%	108	109	٢	NR70
PFNA (Surrogate Recovery)	%	102	108	١	NR70
PFDA (Surrogate Recovery)	%	106	98	٩	NR70
PFUdA (Surrogate Recovery)	%	104	97	١	NR70
PFDoA (Surrogate Recovery)	%	98	98	١	NR70
PFTeDA (Surrogate Recovery)	%	114	93	١	NR70
PFHxDA (Surrogate Recovery)	%	96	98	٩	NR70
FOUEA (Surrogate Recovery)	%	47	43	٩	NR70
PFBS (Surrogate Recovery)	%	103	108	١	NR70
PFHxS (Surrogate Recovery)	%	106	107	١	NR70
PFOS (Surrogate Recovery)	%	105	107	٩	NR70
PFOSA (Surrogate Recovery)	%	114	118	١	NR70
N-MeFOSA (Surrogate Recovery	1%	130	119	٩	NR70
N-EtFOSA (Surrogate Recovery)	%	117	115	٩	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	80	73	٩	NR70
N-EtFOSAA (Surrogate Recover	<b>v%</b>	88	86	٩	NR70
N-MeFOSE (Surrogate Recovery	%	96	117	٩	NR70
N-EtFOSE (Surrogate Recovery)	%	107	87	٩	NR70
4:2 FTS (Surrogate Recovery)	%	62	64	١	NR70
6:2 FTS (Surrogate Recovery)	%	60	53	١	NR70
8:2 FTS (Surrogate Recovery)	%	70	62	١	NR70
8:2 diPAP (Surrogate Recovery)	%	56	68	١	NR70
Dates					
Date extracted		25-MAR-2019	25-MAR-2019		
Date analysed		26-MAR-2019	26-MAR-2019		

N19/006897

to

N19/006898:

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 3 of 17 Report No. RN1226775

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries.

C

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

Lab Reg No.		N19/006897	N19/006898		
Date Sampled		14-MAR-2019	14-MAR-2019		
Sample Reference		HA-0-0.1	HA-0.1-0.2		
	Units				Method
Trace Elements				_	
Total Solids	%	94.8	92.8		NT2_49

Andrew Evans, Analyst Inorganics - NSW Accreditation No. 198

27-MAR-2019

All results are expressed on a dry weight basis.

			Page: 4 of 17
			Report No. RN1226775
Client :	GHD PTY LTD	Job No.	: GHD15/190318
	LEVEL 4, 211 VICTORIA SQUARE	Quote No.	: QT-02018
	ADELAIDE SA 5000	Order No.	: 3319051
		Date Received	: 18-MAR-2019
Attention :	DILARA VALIFF	Sampled By	: CLIENT
Project Name :			
Your Client Ser	rvices Manager :	Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description	
N19/006897/T	HA-0-0.1	SOIL 14-3-19 LEACHATE	
N19/006898/T	HA-0.1-0.2	SOIL 14-3-19 LEACHATE	

Lab Reg No.		N19/006897/T	N19/006898/T		
Date Sampled		14-MAR-2019	14-MAR-2019		
Sample Reference		HA-0-0.1	HA-0.1-0.2		
	Units			Ме	thod
PFAS (per-and poly-fluoroalkyl	substances)				
PFBA (375-22-4)	ug/L	< 0.05	< 0.05	NR	70
PFPeA (2706-90-3)	ug/L	< 0.02	<0.02	NR	70
PFHxA (307-24-4)	ug/L	< 0.01	<0.01	NR	70
PFHpA (375-85-9)	ug/L	< 0.01	<0.01	NR	70
PFOA (335-67-1)	ug/L	< 0.01	<0.01	NR	70
PFNA (375-95-1)	ug/L	< 0.01	<0.01	NR	70
PFDA (335-76-2)	ug/L	< 0.01	<0.01	NR	70
PFUdA (2058-94-8)	ug/L	< 0.01	<0.01	NR	70
PFDoA (307-55-1)	ug/L	< 0.01	<0.01	NR	70
PFTrDA (72629-94-8)	ug/L	< 0.02	<0.02	NR	70
PFTeDA (376-06-7)	ug/L	< 0.02	<0.02	NR	70
PFHxDA (67905-19-5)	ug/L	< 0.02	<0.02	NR	70
PFODA (16517-11-6)	ug/L	< 0.05	< 0.05	NR	70
FOUEA (70887-84-2)	ug/L	< 0.01	<0.01	NR	70
PFDS (335-77-3)	ug/L	< 0.01	<0.01	NR	70
PFPeS (2706-91-4)	ug/L	< 0.01	<0.01	NR	70
PFHxS (355-46-4)	ug/L	< 0.01	<0.01	NR	70
PFHpS (375-92-8)	ug/L	< 0.01	<0.01	NR	70
PFOS (1763-23-1)	ug/L	< 0.02	0.024	NR	70
PFNS (68259-12-1)	ug/L	< 0.01	<0.01	NR	70
PFBS (375-73-5)	ug/L	< 0.01	<0.01	NR	70
PFOSA (754-91-6)	ug/L	< 0.01	<0.01	NR	70
N-MeFOSA (31506-32-8)	ug/L	< 0.02	<0.02	NR	70
N-EtFOSA (4151-50-2)	ug/L	< 0.02	<0.02	NR	70
N-MeFOSAA (2355-31-9)	ug/L	< 0.01	< 0.01	NR	70
N-EtFOSAA(2991-50-6)	ug/L	< 0.01	< 0.01	NR	70
N-MeFOSE (24448-09-7)	ug/L	< 0.05	< 0.05	NR	70
N-EtFOSE (1691-99-2)	ug/L	< 0.05	< 0.05	NR	70

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 5 of 17 Report No. RN1226775

Lab Reg No.			N19/006897/T	N19/006898/T			
Date Sampled			14-MAR-2019	14-MAR-2019			
Sample Reference			HA-0-0.1	HA-0.1-0.2			
		Units				Method	
PFAS (per-and poly-	-fluoroalkyl s	ubstances)		•	· · · ·		
4:2 FTS (757124-7	'2-4)	ug/L	< 0.01	< 0.01		NR70	
6:2 FTS (27619-97	'-2)	ug/L	< 0.01	< 0.01		NR70	-
8:2 FTS (39108-34	-4)	ug/L	< 0.01	< 0.01		NR70	-
10:2 FTS (120226-	-60-0)	ug/L	< 0.01	< 0.01		NR70	-
8:2 diPAP (678-41-	-1)	ug/L	< 0.02	< 0.02		NR70	-
PFBA (Surrogate Re	ecovery)	%	104	96		NR70	
PFPeA (Surrogate R	lecovery)	%	95	90		NR70	
PFHxA (Surrogate F	Recovery)	%	108	99		NR70	
PFHpA (Surrogate F	Recovery)	%	107	95		NR70	
PFOA (Surrogate Re	ecovery)	%	107	85		NR70	
PFNA (Surrogate Re	ecovery)	%	88	82		NR70	
PFDA (Surrogate Re	ecovery)	%	94	83		NR70	
PFUdA (Surrogate F	Recovery)	%	78	72		NR70	
PFDoA (Surrogate F	Recovery)	%	69	61		NR70	
PFTeDA (Surrogate	Recovery)	%	54	68		NR70	
PFHxDA (Surrogate	Recovery)	%	45	49		NR70	
FOUEA (Surrogate F	Recovery)	%	91	79		NR70	
PFBS (Surrogate Re	covery)	%	106	94		NR70	
PFHxS (Surrogate R	Recovery)	%	104	91		NR70	
PFOS (Surrogate Re	ecovery)	%	82	81		NR70	
PFOSA (Surrogate F	Recovery)	%	71	65		NR70	
N-MeFOSAA (Surro	gate Recove	r 🖗	67	55		NR70	
N-EtFOSAA (Surrog	ate Recover	19/0	63	58		NR70	
N-MeFOSE (Surroga	ate Recovery	%	55	61		NR70	
N-EtFOSE (Surrogat	te Recovery)	%	64	66		NR70	
4:2 FTS (Surrogate	Recovery)	%	86	68		NR70	
6:2 FTS (Surrogate	Recovery)	%	89	76		NR70	-
8:2 FTS (Surrogate	Recovery)	%	89	70		NR70	
TCLP							-
Soil pH			5	5		NW_SL9	-
pH of Initial Extract			5	5		NW_SL9	-
pH of Final Extract			5	5		NW_SL9	
Buffer Used			PH 4.93	PH 4.93		NW_SL9	
Dates						•	
Date extracted			20-MAR-2019	20-MAR-2019			
Date analysed			20-MAR-2019	20-MAR-2019			

N19/006897/T

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

& N19/006898/T:

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects. LORs raised for selected analytes due to low surrogate recoveries.

Samples were leached for 18 hours (1:20 sample:leachate) with buffer at pH 4.93 in polypropylene containers and the leachate was analysed for PFAS analytes.

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

Page: 6 of 17 Report No. RN1226775

				5
				Report No. RN1226775
Client	GHD PTY LTD		Job No.	: GHD15/190318
	LEVEL 4, 211 VICTORIA SQUARE		Quote No.	: QT-02018
	ADELAIDE SA 5000		Order No.	: 3319051
			Date Received	: 18-MAR-2019
Attention	DILARA VALIFF		Sampled By	: CLIENT
Project Name	:			
Your Client Se	rvices Manager :		Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description		
N19/006883	RB01	WATER 14-3-19		
N19/006884	QA01	WATER 14-3-19		
N19/006885	P9	WATER 14-3-19		
N19/006886	P34	WATER 14-3-19		

Lab Reg No.		N19/006883	N19/006884	N19/006885	N19/006886				
Date Sampled		14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019				
Sample Reference		RB01	QA01	P9	P34				
	Units					Method			
PFAS (per-and poly-fluoroalkyl substances)									
PFBA (375-22-4)	ug/L	< 0.005	0.018	< 0.005	< 0.005	NR70			
PFPeA (2706-90-3)	ug/L	< 0.002	0.029	< 0.002	0.0029	NR70			
PFHxA (307-24-4)	ug/L	< 0.001	0.037	< 0.001	0.015	NR70			
PFHpA (375-85-9)	ug/L	< 0.001	0.013	0.0063	0.0011	NR70			
PFOA (335-67-1)	ug/L	< 0.001	0.029	<0.001	0.0012	NR70			
PFNA (375-95-1)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFDA (335-76-2)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFUdA (2058-94-8)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFDoA (307-55-1)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFTrDA (72629-94-8)	ug/L	< 0.002	<0.002	<0.002	< 0.002	NR70			
PFTeDA (376-06-7)	ug/L	< 0.002	<0.02	<0.002	< 0.002	NR70			
PFHxDA (67905-19-5)	ug/L	< 0.002	<0.02	<0.002	< 0.02	NR70			
PFODA (16517-11-6)	ug/L	< 0.005	0.0055	< 0.005	< 0.005	NR70			
FOUEA (70887-84-2)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFBS (375-73-5)	ug/L	< 0.001	0.0032	0.0037	0.018	NR70			
PFPeS (2706-91-4)	ug/L	< 0.001	0.0026	0.0017	0.017	NR70			
PFHxS (355-46-4)	ug/L	< 0.001	0.035	0.019	0.14	NR70			
PFHpS (375-92-8)	ug/L	< 0.001	<0.001	<0.001	0.0019	NR70			
PFOS (1763-23-1)	ug/L	< 0.002	0.024	0.0057	0.025	NR70			
PFNS (68259-12-1)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFDS (335-77-3)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
PFOSA (754-91-6)	ug/L	< 0.001	<0.001	<0.001	< 0.001	NR70			
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.02	< 0.02	< 0.002	NR70			
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.02	< 0.02	< 0.02	NR70			
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70			
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70			

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

Page: 7 of 17

Page: 8 of 17 Report No. RN1226775

Lab Reg No.		N19/006883	N19/006884	N19/006885	N19/006886	
Date Sampled		14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019	
Sample Reference		RB01	QA01	P9	P34	
	Units					Method
PFAS (per-and poly-fluoroalkyl s	ubstances)		•	•	•	•
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124-72-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-97-2)	ug/L	< 0.001	0.38	0.0078	0.0087	NR70
8:2 FTS (39108-34-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
10:2 FTS (120226-60-0)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
8:2 diPAP (678-41-1)	ug/L	< 0.02	< 0.05	< 0.02	< 0.02	NR70
PFBA (Surrogate Recovery)	%	98	108	97	100	NR70
PFPeA (Surrogate Recovery)	%	89	119	98	114	NR70
PFHxA (Surrogate Recovery)	%	102	113	103	97	NR70
PFHpA (Surrogate Recovery)	%	110	110	102	100	NR70
PFOA (Surrogate Recovery)	%	110	106	97	106	NR70
PFNA (Surrogate Recovery)	%	94	100	90	109	NR70
PFDA (Surrogate Recovery)	%	93	98	79	100	NR70
PFUdA (Surrogate Recovery)	%	81	58	65	79	NR70
PFDoA (Surrogate Recovery)	%	71	45	49	68	NR70
FOUEA (Surrogate Recovery)	%	78	81	85	91	NR70
PFBS (Surrogate Recovery)	%	104	107	102	98	NR70
PFHxS (Surrogate Recovery)	%	101	103	96	95	NR70
PFOS (Surrogate Recovery)	%	99	108	99	109	NR70
PFOSA (Surrogate Recovery)	%	90	67	69	92	NR70
N-MeFOSAA (Surrogate Recove	r\$⁄}	68	58	50	73	NR70
N-EtFOSAA (Surrogate Recover	1%	77	52	54	62	NR70
N-MeFOSE (Surrogate Recovery	)%	83	56	50	78	NR70
N-EtFOSE (Surrogate Recovery)	%	88	49	55	68	NR70
4:2 FTS (Surrogate Recovery)	%	77	99	97	77	NR70
6:2 FTS (Surrogate Recovery)	%	74	137	73	74	NR70
8:2 FTS (Surrogate Recovery)	%	71	69	58	69	NR70
Dates	1	1	1	1	1	
Date extracted		21-MAR-2019	21-MAR-2019	21-MAR-2019	21-MAR-2019	
Date analysed		26-MAR-2019	26-MAR-2019	26-MAR-2019	26-MAR-2019	

N19/006883

to

N19/006896:

PFOS is quantified using a combined branched and linear standard,

linear and branched isomers are totalled for reporting.

All results corrected for labelled surrogate recoveries.

Page: 9 of 17 Report No. RN1226775

Selected PFAS surrogate recoveries are biased due to matrix effects. LORs raised for selected analytes due to low surrogate recoveries.

All 0

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

				Report No. RN1226775
Client	GHD PTY LTD		Job No.	: GHD15/190318
	LEVEL 4, 211 VICTORIA SQUARE		Quote No.	: QT-02018
	ADELAIDE SA 5000		Order No.	: 3319051
			Date Received	: 18-MAR-2019
Attention	DILARA VALIFF		Sampled By	: CLIENT
Project Name	:			
Your Client Se	rvices Manager :		Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description		
N19/006887	P35	WATER 14-3-19		
N19/006888	P36	WATER 14-3-19		
N19/006889	P40	WATER 14-3-19		
N19/006890	P41	WATER 14-3-19		

Lab Reg No.		N19/006887	N19/006888	N19/006889	N19/006890	
Date Sampled		14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019	
Sample Reference		P35	P36	P40	P41	
	Units					Method
PFAS (per-and poly-fluoroalkyl s						
PFBA (375-22-4)	ug/L	< 0.05	0.016	0.018	0.0081	NR70
PFPeA (2706-90-3)	ug/L	< 0.02	0.023	0.028	0.0096	NR70
PFHxA (307-24-4)	ug/L	< 0.01	0.027	0.037	0.0097	NR70
PFHpA (375-85-9)	ug/L	< 0.01	0.019	0.012	0.0072	NR70
PFOA (335-67-1)	ug/L	< 0.01	0.019	0.028	0.0040	NR70
PFNA (375-95-1)	ug/L	< 0.01	< 0.001	<0.001	< 0.001	NR70
PFDA (335-76-2)	ug/L	< 0.01	< 0.001	<0.001	< 0.001	NR70
PFUdA (2058-94-8)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70
PFDoA (307-55-1)	ug/L	< 0.01	< 0.001	<0.001	< 0.001	NR70
PFTrDA (72629-94-8)	ug/L	<0.02	< 0.002	<0.002	< 0.002	NR70
PFTeDA (376-06-7)	ug/L	<0.02	< 0.002	<0.002	< 0.02	NR70
PFHxDA (67905-19-5)	ug/L	< 0.02	<0.002	<0.02	< 0.02	NR70
PFODA (16517-11-6)	ug/L	< 0.05	< 0.005	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	ug/L	< 0.01	< 0.001	<0.001	< 0.001	NR70
PFBS (375-73-5)	ug/L	< 0.01	0.015	0.0035	0.0097	NR70
PFPeS (2706-91-4)	ug/L	< 0.01	0.0088	0.0027	0.0096	NR70
PFHxS (355-46-4)	ug/L	0.024	0.084	0.038	0.082	NR70
PFHpS (375-92-8)	ug/L	< 0.01	0.0012	<0.001	0.0011	NR70
PFOS (1763-23-1)	ug/L	0.037	0.050	0.032	0.021	NR70
PFNS (68259-12-1)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70
PFDS (335-77-3)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70
PFOSA (754-91-6)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	ug/L	< 0.02	< 0.002	<0.002	< 0.02	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.02	< 0.002	<0.02	< 0.02	NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.01	<0.002	<0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	<0.01	<0.002	<0.002	< 0.002	NR70

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute

Page: 10 of 17

Page: 11 of 17 Report No. RN1226775

Lab Reg No.		N19/006887	N19/006888	N19/006889	N19/006890				
Date Sampled		14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019				
Sample Reference		P35	P36	P40	P41				
-	Units					Method			
PFAS (per-and poly-fluoroalkyl s	PFAS (per-and poly-fluoroalkyl substances)								
N-MeFOSE (24448-09-7)	ug/L	< 0.05	< 0.005	< 0.005	< 0.005	NR70			
N-EtFOSE (1691-99-2)	ug/L	< 0.05	< 0.005	< 0.005	< 0.005	NR70			
4:2 FTS (757124-72-4)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70			
6:2 FTS (27619-97-2)	ug/L	0.065	<0.001	0.25	0.19	NR70			
8:2 FTS (39108-34-4)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70			
10:2 FTS (120226-60-0)	ug/L	< 0.01	<0.001	<0.001	< 0.001	NR70			
8:2 diPAP (678-41-1)	ug/L	< 0.02	<0.02	<0.02	< 0.02	NR70			
PFBA (Surrogate Recovery)	%	98	98	109	94	NR70			
PFPeA (Surrogate Recovery)	%	93	122	128	97	NR70			
PFHxA (Surrogate Recovery)	%	103	110	119	126	NR70			
PFHpA (Surrogate Recovery)	%	102	112	116	120	NR70			
PFOA (Surrogate Recovery)	%	107	106	110	105	NR70			
PFNA (Surrogate Recovery)	%	89	99	101	92	NR70			
PFDA (Surrogate Recovery)	%	89	90	76	78	NR70			
PFUdA (Surrogate Recovery)	%	77	78	65	61	NR70			
PFDoA (Surrogate Recovery)	%	78	68	46	38	NR70			
FOUEA (Surrogate Recovery)	%	82	84	91	82	NR70			
PFBS (Surrogate Recovery)	%	110	104	106	110	NR70			
PFHxS (Surrogate Recovery)	%	103	98	106	106	NR70			
PFOS (Surrogate Recovery)	%	94	101	103	100	NR70			
PFOSA (Surrogate Recovery)	%	77	79	69	61	NR70			
N-MeFOSAA (Surrogate Recove	r\$4	72	57	53	47	NR70			
N-EtFOSAA (Surrogate Recover	<b>v%</b>	61	48	42	26	NR70			
N-MeFOSE (Surrogate Recovery	/%	83	56	62	33	NR70			
N-EtFOSE (Surrogate Recovery)	%	93	63	51	54	NR70			
4:2 FTS (Surrogate Recovery)	%	76	109	117	103	NR70			
6:2 FTS (Surrogate Recovery)	%	88	73	139	106	NR70			
8:2 FTS (Surrogate Recovery)	%	94	75	73	58	NR70			
Dates									
Date extracted		20-MAR-2019	21-MAR-2019	21-MAR-2019	21-MAR-2019				
Date analysed		20-MAR-2019	26-MAR-2019	26-MAR-2019	26-MAR-2019				

N19/006887 PEAS LOBs raised for this

PFAS LORs raised for this sample due to insufficient sample provided for analysis.

Page: 12 of 17 Report No. RN1226775

Lab Reg No.			N19/006887	N19/006888	N19/006889	N19/006890	
Date Sampled			14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019	
Sample Reference	е		P35	P36	P40	P41	
		Units					Method

All

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

			Page: 13 of 17
			Report No. RN1226775
Client	: GHD PTY LTD	Job No.	: GHD15/190318
	LEVEL 4, 211 VICTORIA SQU	ARE Quote No	. : QT-02018
	ADELAIDE SA 5000	Order No	. : 3319051
		Date Rec	eived : 18-MAR-2019
Attention	: DILARA VALIFF	Sampled	By : CLIENT
Project Name	:		
Your Client Se	ervices Manager :	Phone	: (02) 94490161
Lab Reg No.	Sample Ref	Sample Description	
N19/006891	P42	WATER 14-3-19	
N19/006892	P43	WATER 14-3-19	
N19/006893	P44	WATER 14-3-19	
N19/006894	GWP1-PFC	WATER 14-3-19	

Lab Reg No.			N19/006891	N19/006892	N19/006893	N19/006894	
Date Sampled			14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019	
Sample Reference			P42	P43	P44	GWP1-PFC	
		Units					Method
PFAS (per-and poly-fluoroalkyl substances)							
PFBA (375-22-4)		ug/L	0.0068	< 0.005	0.028	< 0.005	NR70
PFPeA (2706-90-3	3)	ug/L	0.0059	< 0.002	0.043	< 0.002	NR70
PFHxA (307-24-4)	)	ug/L	0.011	< 0.001	0.29	0.0037	NR70
PFHpA (375-85-9)	)	ug/L	0.0036	< 0.001	0.035	< 0.001	NR70
PFOA (335-67-1)		ug/L	0.0074	0.0013	0.050	0.0011	NR70
PFNA (375-95-1)		ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDA (335-76-2)		ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFUdA (2058-94-8	8)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFDoA (307-55-1)	)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFTrDA (72629-94	4-8)	ug/L	< 0.002	< 0.002	<0.002	< 0.002	NR70
PFTeDA (376-06-7	7)	ug/L	< 0.02	< 0.002	< 0.02	< 0.002	NR70
PFHxDA (67905-1	9-5)	ug/L	< 0.02	< 0.02	< 0.02	< 0.002	NR70
PFODA (16517-11	1-6)	ug/L	< 0.05	< 0.05	< 0.05	< 0.005	NR70
FOUEA (70887-84	4-2)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
PFBS (375-73-5)		ug/L	0.0084	0.0035	0.12	0.0056	NR70
PFPeS (2706-91-4	1)	ug/L	0.0077	0.0034	0.17	0.0051	NR70
PFHxS (355-46-4)		ug/L	0.077	0.023	1.6	0.039	NR70
PFHpS (375-92-8)		ug/L	0.0016	< 0.001	0.017	< 0.001	NR70
PFOS (1763-23-1)	)	ug/L	0.035	0.029	0.058	0.011	NR70
PFNS (68259-12-1	1)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70
PFDS (335-77-3)		ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70
PFOSA (754-91-6)	)	ug/L	< 0.001	< 0.001	<0.001	< 0.001	NR70
N-MeFOSA (31506	6-32-8)	ug/L	< 0.02	< 0.02	< 0.02	< 0.02	NR70
N-EtFOSA (4151-5	50-2)	ug/L	< 0.02	< 0.02	< 0.02	< 0.02	NR70
N-MeFOSAA (235	5-31-9)	ug/L	< 0.002	< 0.002	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-	-50-6)	ug/L	< 0.02	< 0.002	< 0.002	< 0.002	NR70

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 14 of 17 Report No. RN1226775

Lab Reg No.			N19/006891	N19/006892	N19/006893	N19/006894	
Date Sampled			14-MAR-2019	14-MAR-2019	14-MAR-2019	14-MAR-2019	
Sample Reference	e		P42	P43	P44	GWP1-PFC	
		Units					Method
PFAS (per-and pe	oly-fluoroalkyl s	ubstances)			•		
N-MeFOSE (244	48-09-7)	ug/L	< 0.005	< 0.005	< 0.005	< 0.005	NR70
N-EtFOSE (1691	-99-2)	ug/L	< 0.05	< 0.005	< 0.005	< 0.005	NR70
4:2 FTS (757124	4-72-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
6:2 FTS (27619-	-97-2)	ug/L	0.024	0.0061	0.031	0.0057	NR70
8:2 FTS (39108-	-34-4)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
10:2 FTS (1202)	26-60-0)	ug/L	< 0.001	< 0.001	< 0.001	< 0.001	NR70
8:2 diPAP (678-4	41-1)	ug/L	< 0.05	< 0.02	< 0.02	< 0.02	NR70
PFBA (Surrogate	Recovery)	%	106	94	104	104	NR70
PFPeA (Surrogate	e Recovery)	%	104	96	112	118	NR70
PFHxA (Surrogat	e Recovery)	%	116	120	104	114	NR70
PFHpA (Surrogat	e Recovery)	%	114	120	128	111	NR70
PFOA (Surrogate	e Recovery)	%	102	112	106	107	NR70
PFNA (Surrogate	Recovery)	%	94	99	86	94	NR70
PFDA (Surrogate	Recovery)	%	82	100	75	85	NR70
PFUdA (Surrogat	e Recovery)	%	58	80	43	71	NR70
PFDoA (Surrogat	e Recovery)	%	30	71	28	68	NR70
FOUEA (Surrogat	te Recovery)	%	39	78	85	82	NR70
PFBS (Surrogate	Recovery)	%	46	108	105	104	NR70
PFHxS (Surrogat	e Recovery)	%	43	105	71	98	NR70
PFOS (Surrogate	Recovery)	%	48	89	86	96	NR70
PFOSA (Surrogat	te Recovery)	%	30	83	53	84	NR70
N-MeFOSAA (Su	rrogate Recove	r%)	23	64	43	68	NR70
N-EtFOSAA (Sur	rogate Recover	19/0	<20	69	35	62	NR70
N-MeFOSE (Surr	ogate Recovery	%	26	63	39	75	NR70
N-EtFOSE (Surro	gate Recovery)	%	<20	49	40	38	NR70
4:2 FTS (Surroga	ate Recovery)	%	35	93	97	77	NR70
6:2 FTS (Surroga	ate Recovery)	%	25	69	79	66	NR70
8:2 FTS (Surroga	ate Recovery)	%	25	72	67	64	NR70
Dates							
Date extracted			21-MAR-2019	21-MAR-2019	21-MAR-2019	21-MAR-2019	
Date analysed			26-MAR-2019	26-MAR-2019	26-MAR-2019	26-MAR-2019	

Ø, A

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 15 of 17 Report No. RN1226775 Client : GHD PTY LTD Job No. : GHD15/190318 LEVEL 4, 211 VICTORIA SQUARE Quote No. : QT-02018 ADELAIDE SA 5000 Order No. : 3319051 Date Received : 18-MAR-2019 : DILARA VALIFF Sampled By : CLIENT Attention Project Name : Your Client Services Manager Phone : (02) 94490161 : Lab Reg No. Sample Ref Sample Description N19/006895 GWP2-PFC WATER 14-3-19 N19/006896 GWP3-PFC WATER 14-3-19

Lab Reg No.			N19/006895	N19/006896					
Date Sampled		-	14-MAR-2019	14-MAR-2019					
Sample Referen	се	-	GWP2-PFC	GWP3-PFC					
		Units					Method		
PFAS (per-and	PFAS (per-and poly-fluoroalkyl substances)								
PFBA (375-22-4	4)	ug/L	< 0.005	0.0083			NR70		
PFPeA (2706-9	0-3)	ug/L	< 0.002	<0.002			NR70		
PFHxA (307-24	-4)	ug/L	0.0033	< 0.001			NR70		
PFHpA (375-85	-9)	ug/L	0.0011	<0.001			NR70		
PFOA (335-67-	1)	ug/L	0.0015	0.0015			NR70		
PFNA (375-95-	1)	ug/L	< 0.001	<0.001			NR70		
PFDA (335-76-	2)	ug/L	< 0.001	<0.001			NR70		
PFUdA (2058-9	4-8)	ug/L	< 0.001	<0.001			NR70		
PFDoA (307-55	-1)	ug/L	< 0.001	<0.001			NR70		
PFTrDA (72629	94-8)	ug/L	< 0.002	<0.002			NR70		
PFTeDA (376-0	6-7)	ug/L	< 0.002	<0.002			NR70		
PFHxDA (6790	5-19-5)	ug/L	< 0.002	<0.002			NR70		
PFODA (16517	-11-6)	ug/L	< 0.005	< 0.005			NR70		
FOUEA (70887	-84-2)	ug/L	< 0.001	<0.001			NR70		
PFBS (375-73-5	5)	ug/L	0.0082	0.0018			NR70		
PFPeS (2706-9	1-4)	ug/L	0.0075	0.0011			NR70		
PFHxS (355-46	-4)	ug/L	0.068	0.0065			NR70		
PFHpS (375-92	-8)	ug/L	< 0.001	<0.001			NR70		
PFOS (1763-23	-1)	ug/L	0.039	0.018			NR70		
PFNS (68259-1	2-1)	ug/L	< 0.001	<0.001			NR70		
PFDS (335-77-3	3)	ug/L	< 0.001	<0.001			NR70		
PFOSA (754-91	-6)	ug/L	< 0.001	<0.001			NR70		
N-MeFOSA (31	506-32-8)	ug/L	< 0.002	<0.02			NR70		
N-EtFOSA (415	1-50-2)	ug/L	< 0.002	<0.02			NR70		
N-MeFOSAA (2	355-31-9)	ug/L	< 0.002	<0.002			NR70		
N-EtFOSAA(299	91-50-6)	ug/L	<0.002	<0.002			NR70		
N-MeFOSE (244	148-09-7)	ug/L	< 0.005	< 0.005			NR70		
N-EtFOSE (169	1-99-2)	ug/L	< 0.005	< 0.005			NR70		

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 16 of 17 Report No. RN1226775

Lab Reg No.			N19/006895	N19/006896		
Date Sampled			14-MAR-2019	14-MAR-2019		
Sample Reference	e		GWP2-PFC	GWP3-PFC		
		Units				Method
PFAS (per-and pe	oly-fluoroalkyl s	ubstances)				
4:2 FTS (757124	4-72-4)	ug/L	< 0.001	< 0.001		NR70
6:2 FTS (27619-	-97-2)	ug/L	0.019	0.023		NR70
8:2 FTS (39108-	-34-4)	ug/L	< 0.001	< 0.001		NR70
10:2 FTS (1202)	26-60-0)	ug/L	< 0.001	< 0.001		NR70
8:2 diPAP (678-4	41-1)	ug/L	< 0.02	< 0.02		NR70
PFBA (Surrogate	Recovery)	%	93	102		NR70
PFPeA (Surrogate	e Recovery)	%	105	105		NR70
PFHxA (Surrogat	e Recovery)	%	104	122		NR70
PFHpA (Surrogat	e Recovery)	%	109	112		NR70
PFOA (Surrogate	Recovery)	%	104	105		NR70
PFNA (Surrogate	Recovery)	%	97	112		NR70
PFDA (Surrogate	Recovery)	%	83	95		NR70
PFUdA (Surrogat	e Recovery)	%	82	85		NR70
PFDoA (Surrogat	e Recovery)	%	72	78		NR70
FOUEA (Surrogat	te Recovery)	%	83	75		NR70
PFBS (Surrogate	Recovery)	%	97	104		NR70
PFHxS (Surrogat	e Recovery)	%	93	101		NR70
PFOS (Surrogate	Recovery)	%	102	102		NR70
PFOSA (Surrogat	te Recovery)	%	84	81		NR70
N-MeFOSAA (Su	rrogate Recove	rØð	69	66		NR70
N-EtFOSAA (Sur	rogate Recover	19/0	83	63		NR70
N-MeFOSE (Surr	ogate Recovery	%	72	48		NR70
N-EtFOSE (Surro	gate Recovery)	%	72	58		NR70
4:2 FTS (Surroga	ate Recovery)	%	75	84		NR70
6:2 FTS (Surroga	ate Recovery)	%	57	64		NR70
8:2 FTS (Surroga	ate Recovery)	%	63	76		NR70
Dates						
Date extracted			21-MAR-2019	21-MAR-2019		
Date analysed			26-MAR-2019	26-MAR-2019		

All

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

27-MAR-2019

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

Page: 17 of 17 Report No. RN1226775



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1226772

Measurement Uncertainty is available upon request.





#### National Measurement Institute

## QUALITY ASSURANCE REPORT

Client:	GHD PT	Y LTD						
NMI QA Report No:	GHD15/19	90318			Sample Mat	rix:	Liquid	
Analyte	Method	LOR	Blank	Sam	ple Duplicates	;	Rec	overies
				Sample	Duplicate	RPD	LCS	Matrix Spike
		ug/L	ug/L	ug/L	ug/L	%	%	%
PFBA (375-22-4)	NR70	0.005	<0.005	NA	NA	NA	104	NA
PFPeA (2706-90-3)	NR70	0.002	<0.002	NA	NA	NA	86	NA
PFHxA (307-24-4)	NR70	0.001	<0.001	NA	NA	NA	76	NA
PFHpA (375-85-9)	NR70	0.001	<0.001	NA	NA	NA	83	NA
PFOA (335-67-1)	NR70	0.001	<0.001	NA	NA	NA	80	NA
PFNA (375-95-1)	NR70	0.001	<0.001	NA	NA	NA	86	NA
PFDA (335-76-2)	NR70	0.001	<0.001	NA	NA	NA	84	NA
PFUdA (2058-94-8)	NR70	0.001	<0.001	NA	NA	NA	93	NA
PFDoA (307-55-1)	NR70	0.001	<0.001	NA	NA	NA	86	NA
PFTrDA (72629-94-8)	NR70	0.002	< 0.002	NA	NA	NA	79	NA
PFTeDA (376-06-7)	NR70	0.002	<0.002	NA	NA	NA	89	NA
PFHxDA (67905-19-5)	NR70	0.002	< 0.002	NA	NA	NA	91	NA
FOUEA (70887-84-2)	NR70	0.001	< 0.001	NA	NA	NA	96	NA
PFBS (375-73-5)	NR70	0.001	< 0.001	NA	NA	NA	91	NA
PFPeS (2706-91-4)	NR70	0.001	< 0.001	NA	NA	NA	87	NA
PFHxS (355-46-4)	NR70	0.001	< 0.001	NA	NA	NA	87	NA
PFHpS (375-92-8)	NR70	0.001	< 0.001	NA	NA	NA	87	NA
PFOS (1763-23-1)	NR70	0.002	< 0.002	NA	NA	NA	85	NA
PENS (68259-12-1)	NR70	0.001	<0.001	NA	NA	NA	82	NA
PEDS (335-77-3)	NR70	0.001	<0.001	NA	NA	NA	79	NA
PEOSA (754-91-6)	NR70	0.001	<0.001	ΝΔ	NA	NΔ	79	NA
N-MeEOSA (31506-32-8)	NR70	0.001	<0.001	ΝΔ	ΝA	ΝΔ	80	ΝΔ
N-EtEOSA (4151-50-2)	NR70	0.002	<0.002	ΝΔ	ΝA	ΝΔ	73	ΝΔ
N-MeEOSAA (2355-31-9)	NR70	0.002	<0.002	ΝΔ	ΝA	ΝΔ	106	ΝΔ
N_EtEOSAA(2001_50_6)	NR70	0.002	<0.002		ΝA	NΔ	80	ΝΔ
$N_{\rm M2} = 0.0000000000000000000000000000000000$		0.002	<0.002	ΝΔ	ΝΔ	ΝΔ	87	ΝΔ
N-MEFUSE (24446-09-7)		0.005	<0.005				07	
IN-ELFUSE (1091-99-2)	NP70	0.003	<0.000				32	
4:2 FIS (15/124-12-4)		0.001	~0.001				90	
6:2 FTS (2/619-9/-2)		0.001	<0.001				92	INA NA
8:2 F IS (39108-34-4)		0.001	<0.001	INA NA	INA NA		92	NA NA
10:2 F IS (120226-60-0)	INK/U	0.001	<0.001	NA	NA	NA	12	NA
8:2 diPAP (678-41-1)	NR70	0.002	<0.002	NA	NA	NA	91	NA

Results expressed in percentage (%) or ug/L wherever appropriate. Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%. 'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Alle 9

Danny Slee Organics Manager, NMI-North Ryde 27/03/2019

Date:



**Australian Government** 

**National Measurement Institute** 

## **QUALITY ASSURANCE REPORT**

Client:	GHD PTY LTD							
NMI QA Report No:	GHD15/190318				Sample Matri	Solid		
Analyte	Method	LOR	Blank	Sam	ple Duplicates	Recoveries		
-				Sample	Duplicate	RPD	LCS	Matrix Spike
		mg/kg	mg/kg	mg/kg	mg/kg	%	%	%
				N19/006898	N19/006898			N19/006898
PFBA (375-22-4)	NR70	0.002	< 0.002	0.0025	< 0.002	-	112	86
PFPeA (2706-90-3)	NR70	0.002	< 0.002	<0.002	<0.002	-	104	98
PFHxA (307-24-4)	NR70	0.001	<0.001	<0.001	< 0.001	-	89	94
PFHpA (375-85-9)	NR70	0.001	< 0.001	<0.001	<0.001	-	91	104
PFOA (335-67-1)	NR70	0.001	< 0.001	<0.001	<0.001	-	86	86
PFNA (375-95-1)	NR70	0.001	< 0.001	<0.001	<0.001	-	100	93
PFDA (335-76-2)	NR70	0.001	< 0.001	<0.001	<0.001	-	62	72
PFUdA (2058-94-8)	NR70	0.002	< 0.002	<0.002	< 0.002	-	102	92
PFDoA (307-55-1)	NR70	0.002	< 0.002	<0.002	<0.002	-	94	106
PFTrDA (72629-94-8)	NR70	0.002	< 0.002	<0.002	<0.002	-	104	114
PFTeDA (376-06-7)	NR70	0.002	< 0.002	<0.002	<0.002	-	92	95
PFHxDA (67905-19-5)	NR70	0.002	< 0.002	<0.002	<0.002	-	85	89
PFODA (16517-11-6)	NR70	0.005	< 0.005	<0.005	< 0.005	-	95	95
FOUEA (70887-84-2)	NR70	0.001	< 0.001	<0.001	<0.001	-	95	96
PFBS (375-73-5)	NR70	0.001	< 0.001	<0.001	<0.001	-	97	100
PFPeS (2706-91-4)	NR70	0.001	< 0.001	<0.001	<0.001	-	98	97
PFHxS (355-46-4)	NR70	0.001	<0.001	<0.001	< 0.001	-	96	104
PFHpS (375-92-8)	NR70	0.001	<0.001	<0.001	< 0.001	-	101	109
PFOS (1763-23-1)	NR70	0.002	< 0.002	<0.002	<0.002	-	97	103
PFNS (68259-12-1)	NR70	0.001	< 0.001	<0.001	< 0.001	-	93	102
PFDS (335-77-3)	NR70	0.001	< 0.001	<0.001	<0.001	-	100	107
PFOSA (754-91-6)	NR70	0.001	< 0.001	<0.001	< 0.001	-	88	93
N-MeFOSA (31506-32-8)	NR70	0.002	< 0.002	< 0.002	< 0.002	-	91	108
N-EtFOSA (4151-50-2)	NR70	0.002	< 0.002	< 0.002	< 0.002	-	93	95
N-MeFOSAA (2355-31-9)	NR70	0.002	< 0.002	<0.002	< 0.002	-	103	81
N-EtFOSAA(2991-50-6)	NR70	0.002	< 0.002	<0.002	<0.002	-	95	97
N-MeFOSE (24448-09-7)	NR70	0.005	< 0.005	<0.005	<0.005	-	83	100
N-EtFOSE (1691-99-2)	NR70	0.005	< 0.005	<0.005	< 0.005	-	110	64
4:2 FTS (757124-72-4)	NR70	0.001	< 0.001	<0.001	< 0.001	-	98	106
6:2 FTS (27619-97-2)	NR70	0.001	<0.001	<0.001	<0.001	-	100	99
8:2 FTS (39108-34-4)	NR70	0.001	<0.001	<0.001	< 0.001	-	109	75
10:2 FTS (120226-60-0)	NR70	0.002	< 0.002	<0.002	< 0.002	-	104	78
8:2 diPAP (678-41-1)	NR70	0.002	< 0.002	< 0.002	< 0.002	-	92	95

Results expressed in percentage (%) or mg/kg wherever appropriate.

Acceptable Spike recovery is 50-150%. Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Alu 9

Danny Slee Organics Manager, NMI-North Ryde 27/03/2019



## **CERTIFICATE OF ANALYSIS**

Work Order	ES1908229	Page	: 1 of 5		
Client	: GHD PTY LTD	Laboratory	Environmental Division Sydney		
Contact	: DILARA VALIFF	Contact	: Customer Services ES		
Address	: 2/11 VICTORIA SQUARE	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164		
	ADELAIDE SA, AUSTRALIA 5000				
Telephone	: +61 08 8111 6600	Telephone	: +61-2-8784 8555		
Project		Date Samples Received	: 18-Mar-2019 15:30		
Order number	: 3319051	Date Analysis Commenced	: 20-Mar-2019		
C-O-C number	:	Issue Date	: 21-Mar-2019 16:18		
Sampler	:		Hac-MRA NATA		
Site	:				
Quote number	: EN/005/18		According to a		
No. of samples received	: 1		Accredited for compliance with		
No. of samples analysed	: 1		ISO/IEC 17025 - Testing		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

Position

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW

Page	: 2 of 5
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Page	: 3 of 5
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



## Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		QA02					
	Client sampling date / time		14-Mar-2019 00:00					
Compound	CAS Number	LOR	Unit	ES1908229-001				
				Result				
EP231A: Perfluoroalkyl Sulfonic Acids								
Perfluorobutane sulfonic acid	375-73-5	0.02	µg/L	<0.02				
(PFBS)								
Perfluoropentane sulfonic acid	2706-91-4	0.02	µg/L	<0.02				
(PFPeS)								
Perfluorohexane sulfonic acid	355-46-4	0.02	µg/L	0.05				
Perfluoroheptane sulfonic acid	375-92-8	0.02	µq/L	<0.02				
(PFHpS)			10					
Perfluorooctane sulfonic acid	1763-23-1	0.01	µg/L	0.03				
(PFOS)								
Perfluorodecane sulfonic acid	335-77-3	0.02	µg/L	<0.02				
(PFDS)								
EP231B: Perfluoroalkyl Carboxylic Aci	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1				
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	0.04				
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	0.05				
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	0.02				
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	0.04				
Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02				
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02				
Perfluoroundecanoic acid	2058-94-8	0.02	µg/L	<0.02				
(PFUnDA)	007.55.4	0.00		-0.00				
(PFDoDA)	307-55-1	0.02	µg/L	<0.02				
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02				
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05				
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide	754-91-6	0.02	µg/L	<0.02				
(FOSA)								
N-Methyl perfluorooctane	31506-32-8	0.05	µg/L	<0.05				
sulfonamide (MeFOSA)								
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05				
							1	
Page	: 4 of 5							
------------	---------------							
Work Order	ES1908229							
Client	: GHD PTY LTD							
Project	:							



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		QA02	 	 	
	Cli	ient sampli	ng date / time	14-Mar-2019 00:00	 	 
Compound	CAS Number	LOR	Unit	ES1908229-001	 	 
				Result	 	 
EP231C: Perfluoroalkyl Sulfonamide	es - Continued					
N-Methyl perfluorooctane	24448-09-7	0.05	µg/L	<0.05	 	 
sulfonamidoethanol (MeFOSE)						
N-Ethyl perfluorooctane	1691-99-2	0.05	µg/L	<0.05	 	 
sulfonamidoethanol (EtFOSE)						
N-Methyl perfluorooctane	2355-31-9	0.02	µg/L	<0.02	 	 
sulfonamidoacetic acid						
(MeFOSAA)						
N-Ethyl perfluorooctane	2991-50-6	0.02	µg/L	<0.02	 	 
sulfonamidoacetic acid						
(EtFOSAA)						
EP231D: (n:2) Fluorotelomer Sulfor	nic Acids					
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.05	µg/L	<0.05	 	 
(4:2 FTS)						
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.05	µg/L	0.80	 	 
(6:2 FTS)				0.05		
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.05	µg/∟	<0.05	 	 
(8:2 FIS)		0.05		-0.05		
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.05	µg/L	<0.05	 	 
(10:2 FTS)						
EP231P: PFAS Sums						
Sum of PFAS		0.01	µg/L	1.03	 	 
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.01	µg/L	0.08	 	 
	1					
Sum of PFAS (WA DER List)		0.01	µg/L	1.03	 	 
EP231S: PFAS Surrogate						
13C4-PFOS		0.02	%	93.2	 	 
13C8-PFOA		0.02	%	102	 	 

Page	: 5 of 5
Work Order	ES1908229
Client	: GHD PTY LTD
Project	:



# Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP231S: PFAS Surrogate				
13C4-PFOS		60	120	
13C8-PFOA		60	120	



# QUALITY CONTROL REPORT

Work Order	: ES1908229	Page	: 1 of 7	
Client	: GHD PTY LTD	Laboratory	: Environmental Division S	ydney
Contact	: DILARA VALIFF	Contact	: Customer Services ES	
Address	2/11 VICTORIA SQUARE ADELAIDE SA. AUSTRALIA 5000	Address	: 277-289 Woodpark Road	I Smithfield NSW Australia 2164
Telephone	: +61 08 8111 6600	Telephone	: +61-2-8784 8555	
Project	:	Date Samples Received	: 18-Mar-2019	
Order number	: 3319051	Date Analysis Commenced	: 20-Mar-2019	and the second second
C-O-C number	:	Issue Date	21-Mar-2019	NATA
Sampler	:			Hac-MRA NATA
Site	:			
Quote number	: EN/005/18			Accorditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Position

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW

Page	ŝ	2 of 7
Work Order	ż	ES1908229
Client	ż	GHD PTY LTD
Project	ŝ	



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

- CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.
- LOR = Limit of reporting
- RPD = Relative Percentage Difference
- # = Indicates failed QC

#### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER	o-Matrix: WATER			Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroalkyl Sulfonic Acids (QC Lot: 2244917)									
EM1903824-005	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EM1903711-001	Anonymous	EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids (C	QC Lot: 2244917)							
EM1903824-005	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EM1903711-001	Anonymous	EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	<0.01	0.00	No Limit

Page	: 3 of 7
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



Sub-Matrix: WATER			[	Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231B: Perfluoroall	kyl Carboxylic Acids (QC Lo	ot: 2244917) - continued							
EM1903711-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	μg/L	<0.05	<0.05	0.00	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	μg/L	<0.1	<0.1	0.00	No Limit
EP231C: Perfluoroalk	yl Sulfonamides (QC Lot: 2	244917)							
EM1903824-005	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	μg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
EM1903711-001	Anonymous	EP231X: Perfluorooctane sulfonamide (EQSA)	754-91-6	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeEOSAA)	2355-31-9	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L	<0.02	<0.02	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
EP231D: (n:2) Fluoro	telomer Sulfonic Acids (QC	C Lot: 2244917)							
EM1903824-005	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit

Page	: 4 of 7
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



Sub-Matrix: WATER			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QC Lot: 2244917) - continued									
EM1903824-005	Anonymous	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.00	No Limit
EM1903711-001	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	0.00	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	0.00	No Limit
EP231P: PFAS Sums	(QC Lot: 2244917)								
EM1903824-005	Anonymous	EP231X: Sum of PFAS		0.01	μg/L	<0.01	<0.01	0.00	No Limit
EM1903711-001	Anonymous	EP231X: Sum of PFAS		0.01	µg/L	<0.01	<0.01	0.00	No Limit



#### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER		1		Method Blank (MB)	Laboratory Control Spike (LCS) Report			
				Report	Report Spike		Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 224491	7)							
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.5 µg/L	105	70	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	0.5 µg/L	112	70	130
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	<0.02	0.5 µg/L	99.6	70	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02	0.5 µg/L	114	70	130
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	0.5 μg/L	102	70	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	0.5 µg/L	112	70	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2244	4917)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	2.5 μg/L	122	70	130
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.5 µg/L	117	70	130
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.5 µg/L	117	70	130
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.5 μg/L	115	70	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	0.5 μg/L	119	70	130
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	0.5 μg/L	110	70	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	0.5 µg/L	103	70	130
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02	0.5 μg/L	97.6	70	130
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02	0.5 μg/L	76.6	70	130
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02	0.5 μg/L	114	70	130
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05	1.25 µg/L	119	70	150
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2244917	7)							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02	0.5 µg/L	104	70	130
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05	1.25 μg/L	122	70	150
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05	1.25 μg/L	108	70	150
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L	<0.05	1.25 µg/L	120	70	150
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L	<0.05	1.25 µg/L	119	70	150
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	µg/L	<0.02	0.5 µg/L	122	70	130
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L	<0.02	0.5 µg/L	123	70	130
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2	244917)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	μg/L	<0.05	0.5 µg/L	116	70	130
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	μg/L	<0.05	0.5 µg/L	117	70	130
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	μg/L	<0.05	0.5 μg/L	114	70	130



Sub-Matrix: WATER	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
P231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2244917) - continued								
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	0.5 µg/L	105	70	130

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER				М	atrix Spike (MS) Report	•	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	Concentration	MS	Low	High	
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2244917)						
EM1903824-005	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.5 µg/L	97.0	50	130
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.5 µg/L	108	50	130
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.5 µg/L	101	50	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.5 µg/L	116	50	130
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.5 µg/L	106	50	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.5 µg/L	122	50	130
EP231B: Perfluor	oalkyl Carboxylic Acids (QCLot: 2244917)						
EM1903824-005	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	2.5 µg/L	119	50	130
		EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.5 µg/L	107	50	130
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.5 µg/L	115	50	130
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.5 µg/L	110	50	130
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.5 µg/L	115	50	130
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.5 µg/L	111	50	130
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.5 µg/L	102	50	130
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.5 µg/L	94.2	50	130
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.5 µg/L	83.8	50	130
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.5 µg/L	100	50	130
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	1.25 µg/L	124	50	150
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2244917)						
EM1903824-005	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.5 µg/L	95.6	50	130
		EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	1.25 µg/L	122	50	150
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	1.25 µg/L	94.8	50	150
		EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	1.25 μg/L	116	50	150
		EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	1.25 μg/L	114	50	150
		EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.5 µg/L	114	50	130

Page	: 7 of 7
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



Sub-Matrix: WATER				Ma	atrix Spike (MS) Repor	t	
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2244917) - continued						
EM1903824-005	Anonymous	EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.5 µg/L	115	50	130
EP231D: (n:2) Flue	protelomer Sulfonic Acids (QCLot: 2244917)						
EM1903824-005	Anonymous	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.5 µg/L	108	50	130
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.5 µg/L	116	50	130
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.5 µg/L	106	50	130
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.5 µg/L	111	50	130



# QA/QC Compliance Assessment to assist with Quality Review

Work Order	: ES1908229	Page	: 1 of 4	
Client	: GHD PTY LTD	Laboratory	: Environmental Division Sydney	
Contact	: DILARA VALIFF	Telephone	: +61-2-8784 8555	
Project	:	Date Samples Received	: 18-Mar-2019	
Site	:	Issue Date	: 21-Mar-2019	
Sampler	:	No. of samples received	: 1	
Order number	: 3319051	No. of samples analysed	: 1	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

#### **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Page	: 2 of 4
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



# Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation:	<b>×</b> = ⊦	Holding	time	breach ;	~	=	Within hole	ding	time.
-------------	--------------	---------	------	----------	---	---	-------------	------	-------

Matrix: WATER				Evaluation	: × = Holding time	breach ; 🗸 = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids							
Clear Plastic Bottle - Natural (EP231X) QA02	14-Mar-2019	20-Mar-2019	10-Sep-2019	~	20-Mar-2019	10-Sep-2019	✓
EP231B: Perfluoroalkyl Carboxylic Acids							
Clear Plastic Bottle - Natural (EP231X) QA02	14-Mar-2019	20-Mar-2019	10-Sep-2019	1	20-Mar-2019	10-Sep-2019	✓
EP231C: Perfluoroalkyl Sulfonamides							
Clear Plastic Bottle - Natural (EP231X) QA02	14-Mar-2019	20-Mar-2019	10-Sep-2019	1	20-Mar-2019	10-Sep-2019	✓
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
Clear Plastic Bottle - Natural (EP231X) QA02	14-Mar-2019	20-Mar-2019	10-Sep-2019	1	20-Mar-2019	10-Sep-2019	~
EP231P: PFAS Sums							
Clear Plastic Bottle - Natural (EP231X) QA02	14-Mar-2019	20-Mar-2019	10-Sep-2019	1	20-Mar-2019	10-Sep-2019	~

Page	: 3 of 4
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER Evaluation: * = Quality Control frequency not within specification ; ✓ = Quality Control frequency within s							
Quality Control Sample Type		С	Count	Rate (%)			Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page	: 4 of 4
Work Order	: ES1908229
Client	: GHD PTY LTD
Project	:



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In house: Direct injection analysis of fresh waters after dilution (1:1) with methanol. Analysis by LC-Electrospray-MS-MS, Negative Mode using MRM. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Preparation Methods	Method	Matrix	Method Descriptions
Preparation for PFAS in water.	EP231-PR	WATER	Method presumes direct injection without workup. Preparation includes addition of internal standard and surrogate, and filtration prior to anaylsis.



# **CERTIFICATE OF ANALYSIS**

Work Order	ES1914608	Page	: 1 of 7
Client	: GHD PTY LTD	Laboratory	Environmental Division Sydney
Contact	: DILARA VALIFF	Contact	Andrew Epps
Address	2/11 VICTORIA SQUARE	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	ADELAIDE SA, AUSTRALIA 5000		
Telephone	: +61 08 8111 6600	Telephone	: +61 7 3552 8639
Project	: 3315565	Date Samples Received	: 15-May-2019 10:00
Order number	:	Date Analysis Commenced	: 19-May-2019
C-O-C number	:	Issue Date	22-May-2019 12:24
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/005/18		The contraction Man
No. of samples received	: 16		Accreditation No. 825
No. of samples analysed	: 16		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

Position

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW

Page	: 2 of 7
Work Order	: ES1914608
Client	: GHD PTY LTD
Project	3315565



#### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Page	: 3 of 7
Work Order	: ES1914608
Client	: GHD PTY LTD
Project	3315565



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	RB	P34	P35	P36	P37
	Cli	ent sampli	ng date / time	13-May-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1914608-001	ES1914608-002	ES1914608-003	ES1914608-004	ES1914608-005
				Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Acid	s							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.03	<0.02	0.03	<0.02
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	<0.02	0.14	0.03	0.10	0.04
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	0.04	0.04	0.07	0.04
EP231B: Perfluoroalkyl Carboxylic A	cids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	0.02	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.02	<0.02	0.03	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	0.02	<0.01
EP231D: (n:2) Fluorotelomer Sulfonie	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	<0.01	0.18	0.07	0.17	0.08
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	0.23	0.07	0.27	0.08
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	104	101	101	103	105
13C8-PFOA		0.02	%	106	98.9	101	105	100

Page	: 4 of 7
Work Order	: ES1914608
Client	: GHD PTY LTD
Project	3315565



Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	P40	P41	P42	P43	P44
	Cli	ient sampli	ing date / time	13-May-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1914608-006	ES1914608-007	ES1914608-008	ES1914608-009	ES1914608-010
				Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Acid	ls							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.02	0.02	<0.02	0.14
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	0.03	0.12	0.09	0.03	1.74
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.03	0.05	0.07	0.04	0.13
EP231B: Perfluoroalkyl Carboxylic A	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	0.03	<0.02	<0.02	<0.02	0.05
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	0.05	<0.02	<0.02	<0.02	0.37
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	<0.02	0.05
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	0.05	<0.01	0.02	<0.01	0.08
EP231D: (n:2) Fluorotelomer Sulfoni	c Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.06	0.17	0.16	0.07	1.87
Sum of PFAS (WA DER List)		0.01	µg/L	0.19	0.19	0.20	0.07	2.56
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	101	101	102	100	100
13C8-PFOA		0.02	%	99.3	96.9	98.5	95.0	95.7

Page	: 5 of 7
Work Order	: ES1914608
Client	: GHD PTY LTD
Project	3315565



Sub-Matrix: WATER (Matrix: WATER)		Cli	ent sample ID	GWP1-PFC	GWP2-PFC	GWP3-PFC	FD01	FD02
	Cl	ient sampli	ing date / time	13-May-2019 00:00				
Compound	CAS Number	LOR	Unit	ES1914608-011	ES1914608-012	ES1914608-013	ES1914608-014	ES1914608-015
				Result	Result	Result	Result	Result
EP231A: Perfluoroalkyl Sulfonic Aci	ds							
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	<0.02	<0.02	0.15	<0.02
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	0.04	<0.02	0.07	1.79	<0.02
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.02	0.03	0.05	0.14	0.03
EP231B: Perfluoroalkyl Carboxylic	Acids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	<0.02	<0.02	0.05	<0.02
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	<0.02	<0.02	0.37	<0.02
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	<0.02	<0.02	0.04	<0.02
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	<0.01	<0.01	0.07	<0.01
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids							
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	<0.05	<0.05	<0.05	<0.05
EP231P: PFAS Sums								
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.06	0.03	0.12	1.93	0.03
Sum of PFAS (WA DER List)		0.01	µg/L	0.06	0.03	0.12	2.61	0.03
EP231S: PFAS Surrogate								
13C4-PFOS		0.02	%	103	105	104	104	103
13C8-PFOA		0.02	%	104	96.0	95.7	96.5	99.8

Page	: 6 of 7
Work Order	ES1914608
Client	: GHD PTY LTD
Project	3315565



Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		FD03	 	 	
	Cl	ient sampli	ng date / time	13-May-2019 00:00	 	 
Compound	CAS Number	LOR	Unit	ES1914608-016	 	 
				Result	 	 
EP231A: Perfluoroalkyl Sulfonic Acid	ds					
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	 	 
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.02	µg/L	0.08	 	 
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	0.05	 	 
EP231B: Perfluoroalkyl Carboxylic A	Acids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	 	 
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	 	 
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	 	 
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	 	 
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	µg/L	<0.01	 	 
EP231D: (n:2) Fluorotelomer Sulfoni	ic Acids					
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	 	 
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	 	 
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	 	 
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	 	 
EP231P: PFAS Sums						
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	0.13	 	 
Sum of PFAS (WA DER List)		0.01	µg/L	0.13	 	 
EP231S: PFAS Surrogate						
13C4-PFOS		0.02	%	102	 	 
13C8-PFOA		0.02	%	93.7	 	 

Page	: 7 of 7
Work Order	: ES1914608
Client	: GHD PTY LTD
Project	3315565



# Surrogate Control Limits

Sub-Matrix: WATER	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP231S: PFAS Surrogate				
13C4-PFOS		60	120	
13C8-PFOA		60	120	

# Appendix H – QA/QC

# **H.** Data quality objectives and quality assurance / quality control

# H.1 Data quality objectives

The data quality objectives (DQOs) and investigation strategy have been developed using the methodology discussed in NEPM Schedule B (2) *Guideline on Data Collection, Sample Design and Reporting.* The guideline nominates the implementation of the DQO process in Section 5 of AS4482.1-2005. The purpose of the DQO process is to ensure that the data collection activities are focused on collecting the information needed to make decisions, and answering the relevant questions leading up to such decisions.

The Data Quality Objectives (DQOs) establish a framework for contamination investigations which incorporates a seven stepped continuum that defines the problem at the site. A series of stages then optimises the design of the investigation. The seven steps are outlined below:

- Step 1: State the Problem
- Step 2: Identify the Principal Study Question
- Step 3: Inputs to the Decision
- Step 4: Boundaries of the Study
- Step 5: Decision Rules
- Step 6: Tolerable Limits on Decision Errors
- Step 7: Optimisation of the Data Collection Process

An overview of the DQOs for the investigation is presented below.

# H.1.1 Step 1: state the problem

Parafield Airport Limited (AAL) engaged GHD Pty Ltd (GHD) to undertake this environmental investigation of off – site areas to the west and south – west of the Parafield Airport to assess the nature and extent of contamination associated with historical AFFF use.

Parafield Airport Limited (AAL) engaged GHD Pty Ltd (GHD) to undertake this environmental investigation in the vicinity of Parafield Airport following the identification of elevated PFAS levels in groundwater at groundwater monitoring wells GW3-PFC and P33 which are located airside on the western boundary of the airport and landside in the south western extent of the airport, respectively. Groundwater samples collected at GW3_PFC and P33 reported PFAS concentrations that exceeded the adopted criteria PFAS NEMP 2018 Health Drinking Water. As a result, AAL, in consultation with the SA EPA and other stakeholders, commissioned GHD to undertake an environmental investigation of off - site areas to the west and southwest of the Parafield Airport to assess the nature and extent of PFAS contamination associated with historical AFFF use. This included a bore use survey of residential and recreational properties within the assessment area. The locality of the assessment areas are presented in Figure 1 attached to this report.

# H.1.2 Step 2: Identify the principal study question

The Environmental Investigation was based on the objectives listed in Section 1.2.

#### H.1.3 Step 3: Inputs to the decision

The following inputs are required for the decision:

- Information provided by the client from previous investigations
- Quantitative and qualitative data gained through intrusive sampling, analytical works and observations during intrusive investigations.

#### H.1.4 Step 4: Boundaries of the study

Spatial boundaries for the site are identified in Figure 1 at the end of this report with the vertical extent of the investigations limited to 7 mbgl.

# H.1.5 Step 5: Decision rules

Groundwater analytical data will be assessed against the criteria adopted from relevant guidance as discussed in Section 2.

#### H.1.6 Step 6: Tolerable limits on decision errors

Data generated as part of the Environmental Investigation must be appropriate to allow decisions to be made with confidence. Specific limits have been adopted in accordance with the appropriate guidance from the AS4482.1 which includes appropriate indicators of data quality [data quality indicators (DQIs) used to assess QA/QC and GHD's Standard Field Operating Procedures].

To assess the usability of the data prior to making decisions, the data will be assessed against pre-determined DQIs. The DQIs including precision, accuracy, representativeness, comparability and completeness, will be reviewed at the completion of the Environmental Investigation to assess for the presence of decision errors.

The pre-determined DQIs established for the investigation are discussed below and shown in Table H-1.

- Precision measures the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques is assessed by calculating the Relative Percentage Difference (RPD) of duplicate samples
- Accuracy measures the bias in a measurement system. The accuracy of the laboratory data that are generated during this investigation is a measure of the closeness of the analytical results obtained by a method to the 'true' (or standard) value. Accuracy is assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards
- Representativeness expresses the degree to which sample data accurately and precisely
  represent a characteristic of a population or an environmental condition.
  Representativeness is achieved by collecting samples on a representative basis across the
  site, and by using an adequate number of sample locations to characterise the site to the
  required accuracy
- Comparability expresses the confidence with which one data set can be compared with another. This is achieved through maintaining a level of consistency in techniques used to collect samples; ensuring analysing laboratories use consistent analysis techniques and reporting methods

• Completeness - is defined as the percentage of measurements made which are judged to be valid measurements.

Table H-1	Summary o	f quality assurance /	quality control criteria
-----------	-----------	-----------------------	--------------------------

Data quality indicator	Frequency	Data quality acceptance criteria				
Precision	Precision					
Duplicates (Intra-Laboratory) Duplicates (Inter-Laboratory)	1 / 20 samples 1 / 20 samples	30% - 50% of mean concentration of analyte, however, this variation can be expected to be higher for organic analyses than for inorganics, and for low concentrations of analytes.				
Accuracy						
Laboratory (Method) Blank	One sample per batch of	Less than detection limit or limit of reporting (LOR) of the method used.				
Laboratory Control Spike	20 samples or fewer	Dynamic Limits varying on previous laboratory data.				
Laboratory Spike (Surrogate and Matrix)		Percent recovery is used to assess spiked samples and surrogate standards. Percent recovery is dependent on the type of analyte tested, the concentrations of analytes, and the sample matrix. For matrix spikes Eurofins adopts a matrix spike recovery range of 70-130%. For surrogate spikes Eurofins adopts static limits that vary dependant on matrix and surrogate compounds.				
Laboratory Duplicates	One sample per batch of 10 samples or fewer	Laboratory duplicate samples should have RPD's within the NEPM acceptance criteria of $\pm 30\%$ . The laboratory RPDs have been assessed using the following ranges: Results <10 times LOR: no limits. Results between 10 and 20 times LOR 0% - 50%. Results >20 times LOR: 0-20%.				
Representativeness						
Sampling appropriate for media and analytes Samples extracted and analysed within holding times	All samples All samples	- Organics (14 days) Inorganics (6 months)				
LORs appropriate and consistent	All samples	All samples				
Comparability						
Consistent field conditions, sampling staff and laboratory analysis	All samples	All samples				
Standard operating procedures for sample collection & handling	All samples	All samples				

Data quality indicator	Frequency	Data quality acceptance criteria		
Standard analytical methods used for all analyses	All samples	All samples		
Completeness				
Sample description and COCs completed and appropriate	All Samples	All Samples		
Appropriate documentation	All Samples	All Samples		
Satisfactory frequency and result for QA/QC samples	All QA/QC samples	-		
Data from critical samples is considered valid	-	Critical samples valid		
Notes: COC: Chain of Custody LOR: Limit of Reporting QA/QC: Quality assurance / quality control				

# H.1.7 Step 7: Optimisation of the data collection process

To optimise the design of the Environmental Investigation, a sampling and analytical program was undertaken. Results (including QA/QC results) were reviewed as they were received from the laboratory and any inconsistencies or unexpected data were further investigated with the laboratory. Corrective actions were implemented as required.

# H.2 Field QA/QC

A series of QA/QC procedures were implemented for the field investigation works, which included:

- Collection of QC Samples
- Use of standard sampling procedures
- Use of standard field sampling forms, including Chain of Custodies (COCs)
- Documenting the calibration and use of field equipment.

All field works were conducted by a GHD environmental scientist in accordance with GHD's *Standard Field Operating Procedures* (SFOP).

# H.2.1 QA/QC sampling

Field QA/QC samples were collected and analysed. Field QC sampling was conducted in reference to AS 4482.1: 2005 and NEPM 2013 Schedule B (3) requirements and included the analyses of the following types of samples in Table H-2.

# Table H-2Field QA/QC sample details

Field QA/QC sample type	Details
Intra-Laboratory Duplicate (Blind)	Comprise a single sample that is divided into two separate sampling containers. Both samples are sent anonymously to the primary project laboratory. Blind duplicates provide an indication of the analytical precision of the laboratory, but are inherently influenced by other factors such as sampling techniques and sample media heterogeneity.

Rinsate A sample of analyte free water poured over or through decontaminated field sampling equipment prior to the collection of environmental samples to assess the adequacy of the decontamination process.

GHD adopts the AS4482.1 acceptance criteria of 30% and 50% RPD for field duplicates of inorganics and organics, respectively. Blind duplicate and split samples should have RPDs less than the criteria in each instance. However it is noted that the criteria will not always be achieved, particularly in heterogeneous materials, or at low analyte concentrations.

In the instance where samples and their corresponding duplicates have concentrations of target analytes less than the laboratory LOR, no quantitative comparison can be carried out and therefore the RPD is undefined. This is also the case for situations where the sample result is less than ten times the laboratory LOR.

Duplicate, split and rinsate sample results and Relative Percentage Difference (RPD) calculations are presented in Appendix E.

#### H.2.2 Sample handling and preservation

Groundwater samples were collected using disposable equipment (high density hydrasleeves) and transferred to the laboratory-supplied applicable sample bottles. The samples were immediately placed in an insulated cooler containing ice for storage and were delivered by GHD Field Staff to the laboratory upon the completion of field work on a daily basis.

All samples were received intact as per the Laboratory Reports (included in Appendix F).

#### H.2.3 Chain of custody

Unique Chain of Custody documentation and distinct batch numbers accompany all sample batches. This documentation is included in **Appendix F**.

# H.3 Laboratory QA/QC

The laboratories subcontracted by GHD to analyse samples (NMI and ALS) are certified by the NATA for the required analysis. NATA certification provides for laboratory QA procedures to be in place and to be carried out on an on-going basis.

As part of the NATA requirements, the laboratories carried out and reported analysis of laboratory quality control samples, such as:

- Duplicate samples (the same sample analysed more than once)
- Blanks (containing none of the analytes to be analysed)
- Spiked samples (containing known additions of the analytes to appropriate matrices)
- Standard samples (samples containing known concentrations of the analytes also known as reference standards).

#### H.3.1 Laboratory QA/QC procedures

As part of NATA requirements, the laboratories incorporated a range of QA methods to ensure accuracy of data. This includes the analyses of internal laboratory QC samples, details of which have been provided in Table H-3.

# Table H-3 Laboratory QC sample details

Laboratory QA/QC	Details
sample	

Laboratory (Method) Blank	Usually analyte as use reager proced solutio used to proces	y an orga es of inter d in the p at blank is lure and c n as in the correct f ssing of th	nic or ac est to w reparati carried contains e sampl for poss e sampl	queous solution that is as free as possible of hich is added all the reagents, in the same volume, on and subsequent analysis of the samples. The through the complete sample preparation the same reagent concentrations in the final e solution used for analysis. The reagent blank is ible contamination resulting from the preparation or e.
Laboratory Control Sample	A reference standard of known concentration is analysed along with a batch of samples. The Laboratory Control Sample provides an indication of the analytical accuracy and the precision of the test method and is used for inorganic analyses.			
Laboratory Spike	An aut concer analys extract each b	hentic fiel htration of is. A spik ion and a atch whe	d samp the targ docur nalytica re samp	le is 'spiked' by adding an aliquot of known get analyte(s) prior to sample extraction and nents the effect of the sample matrix on the I techniques. Spiked samples will be analysed for eles are analysed for organic chemicals of concern.
Surrogate Samples	These in term conditi enviror blanks chroma Standa occurre loss.	are orgar ons of chen ons (reter nmental s , standard atographi ard / Spike ed during	nic comp nical cor ntion tim amples. ds and s c technic es provid any sta	bounds which are similar to the analyte of interest mposition, extractability, and chromatographic re), but which are not normally found in These surrogate compounds are 'spiked' into amples submitted for organic analyses by gas- ques prior to sample extraction. Surrogate de a means of checking that no gross errors have ge of the test method leading to significant analyte
Laboratory Duplicates	The arr submit sample sample the and The pr calcula based with re concer The RI <i>RPD</i> (1	halytical lated for an esperana es are ana alytical pr ecision of the on a com sults repr natrations f PD is calc $\%) = \frac{ C_o }{C_o}$	aborator alytical b alytical b alysed in ecision a relative parison esenting or a spe- culated u $-C_d  $ $+C_d$	y collects duplicate sub samples from one sample testing at a rate equivalent to one in twenty batch, or one sample per batch if less than twenty in a batch. A laboratory duplicate provides data on and reproducibility of the test result. s performed by the laboratory is determined by the e percent difference (RPD). The RPD is calculated of an intra-laboratory split of the sample material g the percent difference between the two sample ecific contaminant. using the following formula:
		Where	Co =	Analyte concentration of the original sample
			Cd =	Analyte concentration of the duplicate sample

The laboratory is required to provide this information to GHD. The individual analytical laboratories conduct an assessment of the laboratory QC program internally; however the results are also reviewed and assessed by GHD.

# H.4 Field QC Results

The field QC results analysis below considers groundwater samples collected as part of the environmental investigation.

H.4.1 Groundwater

A total of 12 primary groundwater samples and two (2) primary soil samples were collected, submitted and analysed as part of the environmental investigation.

Five (2) field duplicate (intra-laboratory / inter - laboratory) water samples were collected and analysed as part of the investigation. The target frequency for analysis of field QC samples is 1 in 10 (10%). In this instance, this frequency was exceeded for water.

No field duplicates were collected for soil. The soil sampling was to provide an indication as to whether a localised source of PFAS was present in soil in the vicinity of P44. The soil data was not intended to be used to assess the potential risk to sensitive receptors and as such the absence of replicate sample pairs is not considered to materially affect the reliability of the data set.

The field QC sample collected are provided in the Table H-4.

Site (Groundwater well)	Project phase	QA sample	QA/QC sample	Primary sample
P9	1	QA01	Intra-laboratory	P9
P34	1	QA02	Intra-laboratory	P34
P35	1	QA01	Intra-laboratory	P35
P42	2	QA01	Intra-laboratory	P42
P42	2	QA02	Intra-laboratory	P42
P44	2 (May Resampling)	FD01	Intra-laboratory	P44
GWP2-PFC	2 (May Resampling)	FD02	Intra-laboratory	GWP2-PFC
GWP3-PFC	2 (May Resampling)	FD03	Intra-laboratory	GWP3-PFC

# Table H-4 Analysed field QC samples for groundwater

No RPD exceedances were recorded.

# H.4.3 Rinsate

Three (3) rinsate samples were analysed as part of the environmental investigation, one for each day of sampling. All three (3) rinsate samples reported concentrations below the laboratory LOR for PFOS / PFHxS (0.01  $\mu$ g/L) and / or PFOA (0.01  $\mu$ g/L), therefore indicating, that there was no evidence of cross contamination during sample collection.

# H.5 Laboratory program

The laboratories utilised for this assessment (NMI and ALS Group) undertook their own internal quality assurance and quality control procedures for sample analysis. GHD has reviewed the internal laboratory control data provided within the laboratory reports, which are provided in **Appendix F**.

All of the internal laboratory QA QC analysis, including laboratory duplicates (DUP), method blanks (MB), laboratory control spikes (LCS), matrix spikes (MS) and surrogates spikes were within the data quality criteria, with the exceptions summarised in the following Table H-10.

Table H-10

# Laboratory QA outliers summary

Types	Laboratory Reports	Analytes	Reasons
Method Blank	NA	NA	NA

Types	Laboratory Reports	Analytes	Reasons
Laboratory Duplicate	NA	NA	NA
Laboratory Control Spike	NA	NA	NA
Matrix Spike	NA	NA	NA
Surrogate Recovery	NA	NA	NA
Holding Times	NA	NA	NA
Notes: NA No outliers occurred.			

No Outliers occurred.

# H.6 Overall Assessment of Data Quality

The GHD QAQC parameters were within the specified requirements, therefore the data is considered to be valid and of sufficient quality for the purposes of this Environmental Investigation.

**Appendix I** – Community Engagement



16 November 2018

Our ref: 3319051

Dear resident

# Groundwater survey

Investigations are currently being undertaken at Parafield Airport in relation to the historical use of PFAS containing fire-fighting foam on the airport by a number of former Commonwealth agencies until 1986, after which time these services were provided externally by the local municipal fire service.

PFAS stands for 'per- and poly-fluoro alkyl substance'. PFASs are ingredients in some common domestic products such as paints, dishwasher rinse aids, and textile treatments (water proofing, stain prevention) along with certain types of fire fighting foam called AFFF (aqueous film forming foams) that were used previously by various Federal Government entities in firefighting activities at Parafield Airport until 1986. Parafield Airport Limited (PAL) is coordinating management of PFAS on the airport under its lease with the Federal Government.

Whilst recent investigations showed PFAS levels within close proximity to the airport boundary were generally low across the airport, PFAS levels were above the relevant guideline value at two locations within the airport boundary. The purpose of this survey is to determine the use of groundwater extraction bores adjacent to the airport should further environmental investigations need to be undertaken in the area.

Members of our project team will be door-knocking landowners between 16/11/2018 and 30/11/2018 from 9am to 8pm. If you are unavailable during these times, but would like to complete the voluntary survey, simply visit <u>https://www.surveymonkey.com/r/SM9H3L3</u> to complete the survey online by 19 December 2018. The survey should take no longer than 10 minutes to complete.

Subject to the council approval the GHD field scientist will return to install four (4) groundwater monitoring wells on public land to assess the nature and extent of any potential impacts on the groundwater. The groundwater monitoring wells will be drilled to a depth of 6 m. During the installation of the groundwater wells, the only machinery used will be rotary drill rig. The wells will be installed at ground level with a 180 mm diameter metal cover flush to ground.

At this stage, the timing of the installation will be two (2) days, followed by a groundwater sampling event a week after installation. Work to install these groundwater monitors will commence on Monday 26 November 2018. The project team will make every effort to minimise impacts on neighbouring landholders and we thank you for your patience and understanding during these works. If contamination is found in the groundwater, PAL will fulfil its environmental obligations to the South Australian Government and local community. This will include further investigation to determine the extent of impact and potential risk to human health and ecological receptors. All environmental investigations, remediation and monitoring will be undertaken in accordance with the Environment Protection Act 1993, National Environment Protection (Assessment Site Contamination) Measure 1999, the PFAS National Environmental Management Plan and relevant state guidelines.

PAL works cooperatively with a range of government agencies in relation to its monitoring programs. Details of the groundwater survey may be shared with the technical advisors, Commonwealth and State regulatory authorities to determine whether further environmental investigations are required.

In the event that it is decided that further environmental investigations are required, the information obtained from the survey would be used to inform that investigation. For privacy reasons, your name or address will not be published.

Should you desire further information about the groundwater survey or PFAS, you can contact the project team on 1800 531 899. Alternatively, survey respondents can visit the airport website: https://www.parafieldairport.com.au/environment SA Health provide general health advice in respect to PFAS on their website (<u>http://www.sahealth.sa.gov.au</u>) and SA Health's Scientific Services can be contacted on (08) 226 7100. The South Australian Environment Protection Authority can be contacted on (08) 8204 2004.

Once the results and findings of the groundwater survey and other on-going investigations are available, PAL will host open days in order to share the results with the local community. At this stage, it is anticipated that results will be available by late January 2019. More information on the open days will be provided to community members closer to time they are due to occur.

Sincerely GHD Pty Ltd

Scott Cawrse Stakeholder Engagement Manager

The purpose of this survey is to obtain information from you about your groundwater use. Information collected will help us determine the extent of bore use in the area and how bores are being used. This will assist us in determining what additional sampling needs to be conducted within the investigation area to better understand the hydrogeological characteristics adjacent to the southwestern boundary of Parafield Airport.

Investigations are currently being undertaken in relation to the historical use of PFAS containing fire-fighting foam on the airport by a number of former Commonwealth agencies until 1986, after which time this service was provided externally by the local municipal fire service. Parafield Airport Limited (PAL) is coordinating management of PFAS on the airport under its lease with the Federal Government.

Regular soil and groundwater sampling continues to be undertaken at the airport.

The requested information will help inform PAL's investigation of groundwater use adjacent to the western boundary of the airport. This information is being collected by GHD on behalf of PAL.

The collection of this information is voluntary.

The information you provide may be shared with technical advisors, the Commonwealth Government, and relevant SA government agencies, organisations, and entities directly involved in groundwater regulation. Such organisations may include, but are not limited to: the Department of Infrastructure, Regional Development and Cities, SA Environment Protection Authority, SA Department of Health, SA Department for Environment and Water, SA Water.

PAL's Privacy Policy is available at https://www.parafieldairport.com.au/footer/privacy/

PAL's Privacy Policy contains information on how an individual may apply for access to their personal information and how an individual may apply to have their personal information amended. If you have any privacy or security concerns, please contact PAL via email: pal@aal.com.au

Name*		
Address*		
City/Town*		
State*		
Postal Code*		
Email Address		
Phone Number		

* 1. Contact details (*mandatory field)

Feedback from the survey cannot be considered unless a name and address has been provided	
SECTION 1: PROPERTY WATER SUPPLY SOURCE	
2. What type of property are you responding about?	
Private residential	
Industrial / commercial	
Community / recreational	
Other (please specify)	
3. How is water supplied to the dwelling/ building(s) on your property? (tick all that apply)	
SA Water (mains connection)	
Tank / rainwater	
Bore water	
4. How is water supplied to your property for outdoor / non-household use? (tick all that apply)	
Bore water	
SECTION 2: BORE WATER USE	
5. Do you have a groundwater extraction bore(s) at your property?	
Yes (Go to Question 6)	
No (If you do not have a bore, please stop here and submit your survey)	
6 Is your hare a registered hare?	
Yes (Go to Question 7)	
No (Got to Question 8)	
7. If you answered 'yes' to Question 6, what is the permit/ registration number(s) of your well?	
Well No	

8. Ho	ow many active bores do you have on your property (in working condition)?
	None
	L
$\bigcirc$	2
$\bigcirc$ :	3 or more
9. W	hat activities do you currently use bore water for on your property? (tick all that apply)
	Drinking Irrigation
	Other house (cooking, showering, washing, etc.) Swimming
<u> </u>	Vegetables / Fruit trees Pets / stock
Other	(please specify)
10. Is flush	s your bore plumbed into the house and used for household or domestic purposes (other than ing toilets)
$\bigcirc$	Yes - the bore is plumbed directly to the house and supplies household water
$\bigcirc$	Yes - the bore is connected to rainwater tanks which supply household water
	No - the hore is not connected to the house
$\bigcirc$	
11. C	Do you have rainwater tanks to supply water at your property?
$\bigcirc$	Yes (Go to Question 12)
	No (Please stop here and submit your survey)
0	
12.⊦	lave your household rainwater tanks contained bore water, either currently or historically?
$\bigcirc$	Yes - my household rainwater tanks are currently mixed with bore water
$\bigcirc$	Yes - in the past
	No - bore water has not been used in rainwater tanks

Appendix J – Environmental Projects Report


24 April 2019

Robert Kaftan Adelaide Airport Limited 1 James Schofield Drive Adelaide Airport SA

Dear Robert

## **Parafield Airport Groundwater Monitoring Event**

## 1. Introduction

Environmental Projects (EP) was commissioned by Adelaide Airport Limited (AAL) to undertake a groundwater monitoring event of three wells at Parafield Airport. A site location plan is provided as Figure 1, **Attachment 1**.

## 1.1 Objectives

The groundwater monitoring event was to assess PFAS concentrations in groundwater.

## 2. Scope of Work

The scope of work for the groundwater monitoring event included:

- preparation of safety plans and application for required AAL permits
- gauging depth to groundwater, from top of casing (TOC), at the three selected monitoring wells
- collect samples from the three selected wells using hydrasleeve and transferring the samples into appropriately preserve bottles provided by the primary laboratory Australian Laboratory Services (ALS) and the secondary laboratory National Measurement Institute (NMI)
- dispatching all samples to the testing laboratories under chain of custody procedure
- chemical testing of three groundwater samples and two duplicate samples by NATA accredited contract laboratory ALS and NMI for:
  - extended PFAS suite (low-level detection)

Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

Environmental approvals ISO1 4001 Systems and audits Strategic advice Contaminated land Risk assessments and feasibility Compliance and due diligence

- tabulating chemical testing data and comparing the respective analyte concentrations against appropriate published criteria PFAS National Environmental Management Plan (NEMP)
- provide a factual report summarising the works completed, the methodology and the analytical results.

## 3. Groundwater Assessment Methodology

## 3.1 Regulatory Guidance

The groundwater monitoring event was undertaken in accordance with the following guidance documents:

- Environment Protection Authority Guideline Regulatory monitoring and testing; Groundwater Sampling (SA EPA 2007)
- National Environment Protection (Assessment of Site Contamination) Measure (ASC NEPM), National Environment Protection Council 1999, as amended 2013
- PFAS National Environmental Management Plan (NEMP) 2018

## 3.2 Groundwater Well Gauging and Sampling Methodology

The groundwater monitoring event methodology is summarised in Table 3-1.

Groundwater well locations are provided as Figure 2, Attachment 1.

### Table 3-1: Groundwater Monitoring Methodology

Activity	Details
Contamination	Per the NEMP, additional precautions were given to the PFAS sampling and analysis plan to limit PFAS sample contamination. Attention was given to possible products that can cause PFAS contamination, including but not limited to clothing fabric treatments, sunscreens, cosmetics, food wrappers and sticky notes. The field representative took precautions not to wear or use such products and not to touch sample or sample containers with clothing, bare skin or other. Reusable freezer bricks were not used. Dedicated disposable hydrasleeves for PFAS sampling were provided by Air-Met Scientific and samples bottles for PFAS low level detection were supplied by National Measurement Institute (NMI). A PFAS free decontamination solution was used for any reusable equipment. The sampler washed his hands and wore a new clean pair of disposable nitrile gloves before sample collection.
Groundwater level gauging	On 10 April 2019 EP gauged the standing water level (SWL) at three monitoring wells located at Parafield Airport (GWP2-PFC, GWP3-PFC, P44) using an electronic interface probe (IP). The depth to groundwater and to bottom of well was measured relative to the top of well casing and recorded as metres below top of well casing (mBTOC).
Groundwater sampling	On 10 April 2019 EP deployed three hydrasleeves, one in each groundwater well. The minimal water displaced during deployment was given time to equilibrate. The hydrasleeves were retrieved and samples collected on 10 April 2019. Following groundwater sample collection into laboratory supplied bottles, water quality parameters including pH, electrical conductivity (EC), reduction/oxidation potential (redox), total dissolved solids (TDS) and temperature were recorded using a calibrated water quality meter. All groundwater samples were placed into appropriately preserved bottles supplied
	by the analytical laboratories.

Activity	Details
Equipment decontamination	In order to minimise the potential for cross-contamination, the IP was cleaned with a PFAS-free decontamination solution (Liquinox or similar) and rinsed with potable water between every monitoring well. All other equipment used was dedicated to wells and disposed of following groundwater sampling.
Quality control samples and duplicate samples	Two blind-coded field duplicate samples DUP-1 and DUP-2 were recovered during the groundwater monitoring event for the purpose of assessing the precision and repeatability of the analytical data. One equipment rinsate blank sample was recovered during groundwater sampling. The blank samples were collected by pouring potable water over and through the decontaminated equipment into an appropriate laboratory supplied sample container. EPs QA/QC methodology was generally consistent with the recommendations in the ASC NEPM.
Sample preservation	Groundwater samples were stored under chilled conditions in a portable cooler immediately after sampling. Samples were kept chilled prior to and during delivery to the contract laboratory. Sample transport was performed in accordance with EPs chain of custody procedures.
Laboratory analysis	The recovered groundwater samples were dispatched to the primary laboratory, ALS for chemical testing. Two inter-laboratory duplicate samples (DUP-1 and DUP-2) from groundwater wells (GWP2-PFC and GWP3-PFC) were forwarded to the secondary laboratory, NMI. Both laboratories were NATA accredited for the chemical testing performed. Analysis: extended PFAS suite (low-level detection).

## 4. Groundwater Results

## 4.1 Assessment Criteria

Groundwater chemical data summary tables are presented in **Attachment 3** and include comparison of results against the following adopted screening criteria:

- PFAS NEMP 2018
  - Table 1 Health Drinking Water
  - Table 1 Health Recreational Water
  - Table 5 Freshwater (80%, 90%, 95% and 99% species protection level)

### 4.2 Field Measurements and Observations

Standing water levels (SWLs) and water quality parameters for each groundwater well are summarised in Table 4-1.

Well ID	SWL mBTOC	рН	EC μS/cm	Redox mV	Dissolved Oxygen ppm	Temperature ℃
GWP2-PFC	3.718	7.08	1,786	86.8	2.26	20.4

### Table 4-1: Groundwater Monitoring Methodology

Well ID	SWL mBTOC	рН	EC μS/cm	Redox mV	Dissolved Oxygen ppm	Temperature ℃
GWP3-PFC	3.984	7.10	3,058	114.5	4.92	22.5
P44	6.098	6.93	4,185	113.8	3.92	20.0

## 4.3 Groundwater Analytical Results

Chemical data summary tables are presented in **Attachment 2** and include comparison of results against the adopted screening criteria identified in Section 4.1 above.

Concentrations exceeding a relevant guideline screening criterion have been highlighted in the data tables. Where concentrations exceed more than one of the criteria, the concentration has been highlighted with the value with the highest screening level.

Laboratory certificates and chain of custody documentation is presented in Attachment 3.

Several perfluorinated compounds were detected at all groundwater wells, however all were at concentrations below adopted screening criteria except:

- Perfluorooctanesulfonic acid PFOS, with concentrations exceeding the PFAS NEMP 99% Freshwater ecosystem criteria in all three groundwater wells; and
- Sum of PFHxS and PFOS, with concentrations exceeding the PFAS NEMP Health Drinking Water criteria in groundwater well GWP3-PFC.

## 5. QA/QC Validation

An evaluation of all QA/QC information for the groundwater assessment work and a statement of the data representativeness is provided below.

As part of the evaluation of laboratory chemical data, duplicate pair results were compared by determining the relative percentage difference (RPD) between the results. The RPD was calculated using the formula:

RPD (%) = 100(x1 - x2) / X

where x1,  $x^2$  = duplicate results and X = mean of duplicate results.

Based on guidance provided in ASC NEPM 1999 a groundwater RPD within the range of -20% to 20% is considered to show acceptable agreement and, conversely, data is considered to have poor agreement where an RPD is outside this range.

The results of internal laboratory quality control procedures are provided within the laboratory certificates (Appendix R). The acceptance criterion for internal laboratory replicates is set at an RPD of -50% to 50%. Laboratory recoveries should be in the range 70% to 130%.

Table 5-1 indicates conformance to specific QA/QC requirements for groundwater data. Duplicate sample, trip blank and equipment blank results are presented in **Attachment 2**.

## Table 5-1: Groundwater Data Validation

QA/QC Requirement	Completed	Comments
Chain of custody documentation completed	Yes	All samples were transported under strict chain of custody procedures. COC documents are included in Attachment 3.
Appropriate sampling method	Yes	Groundwater wells were sampled using hydrasleeves. This method is the preferred groundwater sampling technique for PFAS compounds.
Samples delivered to laboratory within sample holding times and with correct preservative	Yes	Samples were delivered to the laboratories within the sample holding times and in laboratory-supplied containers prepared with the appropriate preservative (where required).
All analyses NATA accredited	Yes	ALS and NMI were NATA accredited for all the analyses performed.
Required number of sample duplicates and blanks collected	Yes	Two inter-laboratory duplicates were submitted for analysis, meeting the recommendation of 1:10 for three primary samples analysed. Rinsate samples were not submitted for analysis as the samples were collected in dedicated hydrasleeves and decanted directly into laboratory supplied bottles. Overall, the duplicate and blank testing frequency was considered acceptable for assessing the quality of the laboratory data.
A majority of intra-laboratory field duplicate and inter-laboratory field duplicate samples reported RPDs within +/-20%	Yes	The majority of RPDs were within +/- 20% with the exception of perfluoroheptanoic acid, perfluorooctanesulfonic acid PFOS, Sum of PFHxS and PFOS, perfluorodecanoic acid, perfluoropentanesulfonic acid, PFHxS, perfluorooctanoate (PFOA) and 6:2 fluorotelomer sulfonate (6:2 FtS) in duplicate pair GWP2-PFC / DUP-1 and perfluoroheptane sulfonic acid (PFHpS), perfluorobetane sulfonic acid (PFBS), perfluoroheptanoic acid, perfluorooctanoate (PFOA) in duplicate pair GWP3-PFC / DUP-2. The elevated RPDs were likely to be due to low sample concentrations. A number of RPDs were unable to be calculated due to one or both samples having concentrations below laboratory LORs.
Field blank results below laboratory LOR	N/A	Samples not submitted for analysis as the samples were collected in dedicated hydrasleeves and decanted directly into laboratory supplied bottles.
Acceptable laboratory QC results	Yes	Laboratory reports from ALS indicated matrix spike outliers exist for PFHxS and PFOS where MS recovery not determined, background level greater than or equal to 4x spike level Laboratory reports from NMI did not indicate any internal QC exceedances. Overall, the internal laboratory QC results were within acceptable specifications.

Based on the outcomes above, EP considered the data quality was acceptable for the purposes of the assessment.

## 6. Discussion and Conclusions

The objective of the sampling program was to determine the magnitude of PFAS concentrations in groundwater at wells GWP2-PFC, GWP3-PFC and P44 at Parafield airport.

Chemical analysis of groundwater samples collected from each groundwater well shows that there are levels of PFAS present in groundwater. Sum of PFOS and PFHxS concentrations were above the PFAS NEMP 2018 Health-based guidance values in groundwater well GWP3-PFC.

Aquatic ecosystems, freshwater guidance values were also exceeded for PFOS concentrations for 99% species protection levels in all three groundwater wells.

Our conclusions are subject to the limitations expressed below.

Regards,

Joe Pedicini

**Principal Consultant** 

## Attachments

- 1. Figures
- 2. Chemical Summary Tables
- 3. Laboratory Analytical Certificates

# LIMITATIONS

## **Scope of Services**

This environmental site assessment report (the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the client and Environmental Projects ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

## **Reliance on Data**

In preparing the report, Environmental Projects has relied upon data, surveys, analyses, designs and plans as well as any other information provided by the client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, Environmental Projects has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. Environmental Projects will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to Environmental Projects.

## **Environmental Conclusions**

In accordance with the scope of services, Environmental Projects has relied upon the data and conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling techniques can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentrations of contaminants, can change with time.

Within the limitations imposed by the scope of services, the monitoring testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

## **Report for Benefit of Client**

The report has been prepared for the benefit of the client and no other party. Environmental Projects assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitations matters arising from any negligent act or omission of Environmental Projects or for any loss or damage suffered by any other party relying upon the matters dealt with or conclusions expressed in the report. Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters

## **Other Limitations**

Environmental Projects will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

## Attachment 1

Figures





Figure 1

⊐km

Job name: Parafield Airport GME

Prepared for: Adelaide Airport Limited (AAL)

Job number: 19040.01

# **Site Location Plan**

Tiger Moth Lane, Parafield SA 5106



Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

Drawn: AN Date: 12/04/2019 Rev: A



0.5



⊐km

Figure 2

Job name: Parafield Airport GME

Prepared for: Adelaide Airport Limited (AAL)

Job number: 19040.01

# **Sample Location Plan**

Tiger Moth Lane, Parafield SA 5106



Level 3, 117 King William Street, Adelaide 5000 www.environmentalprojects.com.au

Drawn: AN Date: 12/04/2019 Rev: A

## **Attachment 2**

**Chemical Summary Tables** 



								Perflu	orinated Comp	ounds							
	E Perfluoroheptane sulfonic acid (PFHpS)	E EtPerfluorooctanesulf- amid oacetic acid	12 FTS	8.2 FTS	E Perfluorobutane sulfonic acid (PFBS)	E Perfluorobutanoic acid	Perfluoroheptanoic acid	Perfluorohexanoic acid	E Perfluorooctanesulfonic acid	E Perfluoropentanoic acid	E Sum of PFAS (WA DER List)	E Sum of PFHxS and PFOS	MePerfluorooctanesulf. amid oacetic acid	<ul> <li>N-Et perfluorooctanesulfonamid</li> <li>oethanol</li> </ul>	<ul> <li>N-Ethyl perfuorooctanesulfon</li> <li>amide</li> </ul>	<ul> <li>N-Me perfluorooctanesultonamid</li> <li>oethanol</li> </ul>	<ul> <li>N-Methyl perfluorooctane</li> <li>sulfonamide</li> </ul>
EQL	0.0005	0.0005	0.001	0.001	0.0005	0.002	0.0005	0.0005	0.0003	0.0005	0.0003	0.0003	0.0005	0.001	0.001	0.001	0.001
PFAS NEMP 2018 Table 1 Health Drinking Water												0.07					
PFAS NEMP 2018 Table 1 Health Recreational Water												0.7					
PFAS NEMP 2018 Table 5 Freshwater 80%									31								
PFAS NEMP 2018 Table 5 Freshwater 90%									2								
PFAS NEMP 2018 Table 5 Freshwater 95%									0.13								
PFAS NEMP 2018 Table 5 Freshwater 99%									0.00023								

#### Field ID

Field ID	Date																	
GWP2-PFC	10/04/2019	0.0008	<0.0005	< 0.001	< 0.001	0.002	< 0.002	0.0008	0.0009	0.0267	0.0026	0.0470	0.0361	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.001
GWP3-PFC	10/04/2019	0.0031	< 0.0005	< 0.001	< 0.001	0.0106	< 0.002	0.0014	0.0054	0.0514	0.0010	0.148	0.121	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.001
P44	10/04/2019	0.0014	<0.0005	<0.001	<0.001	0.006	<0.002	<0.0005	0.0050	0.0162	< 0.0005	0.0713	0.0570	<0.0005	< 0.001	<0.001	< 0.001	< 0.001

#### Environmental Standards

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Recreational Water

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 80%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 90%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 95%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 99%



							Perfluorinate	d Compounds						
	Perfluorodecanesultonic acid	Perfluorodecanoic acid	Perfluorododecanoic acid	Perfluorononanoic acid	Perfluorooctane sulfonamide	Perfluoropentanesulfonic acid	Perfluorotetradecanoic acid	Perfluorotridecanoic acid	Perfluoroundecanoic acid	PFHxS (355-46-4)	Sum of PFAS	10:2 FTS	Perfluorooctanoate (PFOA)	6.2 Fluorotelomer Sulfonate (6.2 FtS)
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	ug/L	µg/L	µg/L	µg/L
EQL	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003	0.001	0.0005	0.001
PFAS NEMP 2018 Table 1 Health Drinking Water													0.56	
PFAS NEMP 2018 Table 1 Health Recreational Water													5.6	
PFAS NEMP 2018 Table 5 Freshwater 80%													1824	
PFAS NEMP 2018 Table 5 Freshwater 90%													632	
PFAS NEMP 2018 Table 5 Freshwater 95%													220	
PFAS NEMP 2018 Table 5 Freshwater 99%													19	

|--|

Field ID	Date	-													
GWP2-PFC	10/04/2019	< 0.0005	0.0020	< 0.0005	0.0013	0.0005	0.0015	< 0.0005	< 0.0005	< 0.0005	0.0094	0.0531	< 0.001	0.0036	0.001
GWP3-PFC	10/04/2019	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.0005	0.0092	< 0.0005	< 0.0005	< 0.0005	0.0698	0.16	< 0.001	0.004	0.004
P44	10/04/2019	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	0.0068	<0.0005	<0.0005	<0.0005	0.0408	0.0795	< 0.001	0.0033	<0.001

#### Environmental Standards

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Recreational Water HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 80% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 90% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 95% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 99%



								Perflu	orinated Comp	ounds							
	Perfluoroheptane sulfonic acid (PFHpS)	EtPerfluorooctanesulf- amid oacefic acid	4:2 FTS	8:2 FTS	Perfluorobutane sulfonic acid (PFBS)	Perfluorobutanoic acid	Perfluoroh eptanoic acid	Perfluoroh exanoic acid	Perfluorooctanesulfonic acid PFOS	Perfluoropentanoic acid	Sum of PFAS (WA DER List)	Sum of PFHxS and PFOS	MePerfluorooctanesulf- amid oacefic acid	N-Et perfluorooctanesulfonamid oethanol	N-Ethyl perfluorooctanesulfon amide	N-Me perfluorooctanesulfonamid oethanol	N-Methyl perfuorooctane sulfonamide
-	µg/L	µg/L	µg/L	µg/L	ug/m3	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L
EQL	0.0005	0.0005	0.001	0.001	0.5	0.002	0.0005	0.0005	0.0003	0.0005	0.0003	0.0003	0.0005	0.001	0.001	0.001	0.001
PFAS NEMP 2018 Table 1 Health Drinking Water												0.07					
PFAS NEMP 2018 Table 1 Health Recreational Water												0.7					
PFAS NEMP 2018 Table 5 Freshwater 80%									31								
PFAS NEMP 2018 Table 5 Freshwater 90%									2								
PFAS NEMP 2018 Table 5 Freshwater 95%									0.13								
PFAS NEMP 2018 Table 5 Freshwater 99%									0.00023								

Field ID	Date																	
GWP2-PFC	10/04/2019	0.0008	< 0.0005	< 0.001	< 0.001	2.0	< 0.002	0.0008	0.0009	0.0267	0.0026	0.0470	0.0361	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.001
DUP-1	10/04/2019	< 0.001				2.2	0.0072	0.0011	< 0.001	0.021	< 0.002		0.0279	< 0.005	< 0.005	< 0.002	<0.002	< 0.002
RPD						10		32		24			26					
GWP3-PFC	10/04/2019	0.0031	< 0.0005	< 0.001	< 0.001	10.6	< 0.002	0.0014	0.0054	0.0514	0.0010	0.148	0.121	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.001
DUP-2	10/04/2019	0.0012				8.5	0.0051	0.0018	0.0043	0.043	0.0023		0.112	<0.005	< 0.005	< 0.002	<0.002	< 0.002
RPD		88				22		25	23	18	79		8					

#### Environmental Standards

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Recreational Water

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 80%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 90%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 95%

HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 99%



							Perfluorina	ted Compound	s					
	Perfluorodecanesulfonic acid (PFDS)	Perfuorod ecanoic acid	Perfluorod odecanoic acid	Perfluoron on anoic a cid	Perfuorooctane sulfonamide	Perfluoropentanesul fon ic acid	Perfluorotetradecanoic acid PFTeDA	Perfluorotridecanoic acid PFTrDA	Perfuorou ndecanoic acid PFUdA	PFHxS (355-46-4)	Sum of PFAS	10:2 FTS	Perfluorooctanoate (PFOA)	6:2 Fluoro te lomer Sulfonate (6 2 FtS)
	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	µg/L	ug/L	ug/L	µg/L	mg/L	mg/L
EQL	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0003	0.001	0.0000005	0.000001
PFAS NEMP 2018 Table 1 Health Drinking Water													0.00056	
PFAS NEMP 2018 Table 1 Health Recreational Water													0.0056	
PFAS NEMP 2018 Table 5 Freshwater 80%													1.82	
PFAS NEMP 2018 Table 5 Freshwater 90%													0.632	
PFAS NEMP 2018 Table 5 Freshwater 95%													0.22	
PFAS NEMP 2018 Table 5 Freshwater 99%													0.019	

Field I	D	
---------	---	--

Field ID	Date														
GWP2-PFC	10/04/2019	< 0.0005	0.0020	< 0.0005	0.0013	0.0005	0.0015	< 0.0005	< 0.0005	< 0.0005	0.0094	0.0531	< 0.001	0.0000036	0.000001
DUP-1	10/04/2019	< 0.001	0.0015	0.0015	< 0.001	< 0.001	0.001	< 0.002	< 0.002	< 0.002	0.0069		< 0.001	0.0000029	0.0000022
RPD			29				40				31			22	75
GWP3-PFC	10/04/2019	< 0.0005	< 0.0005	< 0.0005	0.0006	< 0.0005	0.0092	< 0.0005	< 0.0005	< 0.0005	0.0698	0.16	< 0.001	0.0000040	0.000004
DUP-2	10/04/2019	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.008	< 0.002	< 0.002	< 0.002	0.069		< 0.001	0.0000032	0.0000048
RPD							14				1			22	18

#### Environmental Standards

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Recreational Water HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 80% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 90% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 95% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Freshwater 99%



	PFDoA (307-55-1)	PFHKDA (67905-19-5)	PFODA (16517-11-6)	FOUEA (70887-84-2)	PFNS (68259-12-1)
_	ug/L	ug/L	ug/L	ug/L	ug/L
EQL	<0.001	<0.002	< 0.005	<0.001	< 0.001
PFAS NEMP 2018 Table 1 Health Drinking Water					
PFAS NEMP 2018 Table 1 Health Recreational Water					
PFAS NEMP 2018 Table 5 Freshwater 80%					
PFAS NEMP 2018 Table 5 Freshwater 90%					
PFAS NEMP 2018 Table 5 Freshwater 95%					
PFAS NEMP 2018 Table 5 Freshwater 99%					

Perfluorinated Compounds

Field ID

GWP2-PFC	10/04/2019					
DUP-1	10/04/2019	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001
RPD						
GWP3-PFC	10/04/2019					
DUP-2	10/04/2019	< 0.001	< 0.002	< 0.005	< 0.001	< 0.001
RPD						

#### Environmental Standards

HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Drinking Water HEPA, Jan 2018, PFAS NEMP 2018 Table 1 Health Recreational Water HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Frestwater 80% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Frestwater 95% HEPA, Jan 2018, PFAS NEMP 2018 Table 5 Frestwater 95%

Date

## Attachment 3

Laboratory Analytical Certificates

									Ţ	, 	1	Γ	ב	
CHAIN OF C	USTODY DOCU	JMENTATIO	<ul> <li>Environm</li> </ul>	ental Projeci	s	A			l	د	L	]		
Pr	oject Title : Pa	rafield Airport	Groundwater	Monitoring E	vent	1L	U,	U	h	A	L	m	C	MO SMARALIA
Joi	b Number : 190	040.01 od Eitzporald					÷							
Frojec	Phone: 04	22 482 364					Prim	ary L	abora	tory:	ALS			11/9/01/06
	Email:	a disa sa sa di a				L	abora	tory (	Juote	Ref:				
	Results to: La	s.Results@ai	vitoginenteip	olects contra										
	<u>br a</u>	a.ftzaora-3@	environmente	IBLOIBETS COM	.au	S	econo	lary L	abora	tory:				
	Invoice to:	<u>b.Results@or</u>	nvironm &ntalpi	rolesty.com.a		L	abora	tory (	Quote	Ref:				
1	bra	COC R		Uprovects.com	<u></u>				I			٦	urna	round Required
		10	040.01											3 day
														o day
	SAN	IPLE DETAIL	.s			 ,			CHE	EMICA	AL TE	STING	REC	QUIRED
Contract Laboratory Sample ID	Sample ID	Sample Depth	Date Sampled	Sample Matrix / Type	tended PFAS suit (ultra-trace detection)									Additional Comments / Notes
	~EB	-	10/04/2019	Water	ă	 								
	тв	-	10/04/2019	Water										
7	GWP2-PFC	-	10/04/2019	Water	1									
U	GWP3-PFC		10/04/2019	Water	1	 								
<u></u>	P44	-	10/04/2019	Water	1	 					L			
(b	vvater	-	10/04/2019	vvater		 					c	mu		montal Division
	<u> </u>									$\vdash$	S	vdr	ev	
												W	x k C	Order Reference
													S	1911356
i														
/_										<del> -</del>			🗰	` <b>````````````````````````````````````</b>
										F	Te	lepho	ne: +	- 61-2-8784 8555
		1		L						F	ı		1	
														· · · · · · · · · · · · · · · · · · ·
									L			<u> </u>		
													ļ	
		.]								-			-	
equested h	abATION by:		R	eceived by:	3	 I	L	I		Ade	i dition	l al Co	nmer	nts
ake B Date\time re	quested:		Date\tim	e received:										
i-Apr-19 Signature:				Signature:	1				-					



## **CERTIFICATE OF ANALYSIS**

Work Order	ES1911356	Page	: 1 of 5
Client		Laboratory	Environmental Division Sydney
Contact	: BRAD FITZGERALD	Contact	: Customer Services ES
Address	EVEL 3 117 KING WILLIAM ST	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	ADELAIDE SA 5001		
Telephone	: +61 08 8410 1846	Telephone	: +61-2-8784 8555
Project	: 19040.01 Parafield Airport Groundwater Monitoring Event	Date Samples Received	: 11-Apr-2019 11:45
Order number	:	Date Analysis Commenced	: 12-Apr-2019
C-O-C number	:	Issue Date	15-Apr-2019 12:35
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Association No. 275
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Franco Lentini
 Sydney Organics, Smithfield, NSW



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.



## Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sample ID		GWP2-PFC	GWP3-PFC	P44	 	
	Ci	ient samplir	ng date / time	10-Apr-2019 00:00	10-Apr-2019 00:00	10-Apr-2019 00:00	 
Compound	CAS Number	LOR	Unit	ES1911356-003	ES1911356-004	ES1911356-005	 
			-	Result	Result	Result	 
EP231A: Perfluoroalkyl Sulfonic Acids							
Perfluorobutane sulfonic acid	375-73-5	0.0005	µg/L	0.0020	0.0106	0.0060	 
(PFBS)							
Perfluoropentane sulfonic acid	2706-91-4	0.0005	µg/L	0.0015	0.0092	0.0068	 
(PFPeS)							
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0005	µg/L	0.0094	0.0698	0.0408	 
Perfluoroheptane sulfonic acid	375-92-8	0.0005	µg/L	0.0008	0.0031	0.0014	 
(РЕНрб)	4700.00.4	0.0002		0.0267	0.0514	0.0462	
(PFOS)	1763-23-1	0.0005	μg/L	0.0207	0.0514	0.0102	 
Perfluorodecane sulfonic acid	335-77-3	0.0005	µg/L	<0.0005	<0.0005	<0.0005	 
(PFDS)							
EP231B: Perfluoroalkyl Carboxylic Acid	ds						
Perfluorobutanoic acid (PFBA)	375-22-4	0.002	µg/L	<0.002	<0.002	<0.002	 
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0005	µg/L	0.0026	0.0010	<0.0005	 
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0005	µg/L	0.0009	0.0054	0.0050	 
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0005	µg/L	0.0008	0.0014	<0.0005	 
Perfluorooctanoic acid (PFOA)	335-67-1	0.0005	µg/L	0.0036	0.0040	0.0033	 
Perfluorononanoic acid (PFNA)	375-95-1	0.0005	µg/L	0.0013	0.0006	<0.0005	 
Perfluorodecanoic acid (PFDA)	335-76-2	0.0005	µg/L	0.0020	<0.0005	<0.0005	 
Perfluoroundecanoic acid	2058-94-8	0.0005	μg/L	<0.0005	<0.0005	<0.0005	 
(PFUNDA)	207 55 1	0.0005	ug/l	<0.0005	<0.0005	<0.0005	
(PFDoDA)	307-33-1	0.0000	µg/L	-0.0005	-0.0005	\$0.0000	 
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0005	µg/L	<0.0005	<0.0005	<0.0005	 
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	µg/L	<0.0005	<0.0005	<0.0005	 
EP231C: Perfluoroalkyl Sulfonamides							
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0005	µg/L	0.0005	<0.0005	<0.0005	 
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.001	µg/L	<0.001	<0.001	<0.001	 
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.001	µg/L	<0.001	<0.001	<0.001	 



## Analytical Results

Sub-Matrix: WATER (Matrix: WATER)	Client sampling date / time			GWP2-PFC	GWP3-PFC	P44	 
	Cl	lient sampli	ng date / time	10-Apr-2019 00:00	10-Apr-2019 00:00	10-Apr-2019 00:00	 
Compound	CAS Number	LOR	Unit	ES1911356-003	ES1911356-004	ES1911356-005	 
				Result	Result	Result	 
EP231C: Perfluoroalkyl Sulfonamide	es - Continued						
N-Methyl perfluorooctane	24448-09-7	0.001	µg/L	<0.001	<0.001	<0.001	 
sulfonamidoethanol (MeFOSE)							
N-Ethyl perfluorooctane	1691-99-2	0.001	µg/L	<0.001	<0.001	<0.001	 
sulfonamidoethanol (EtFOSE)							
N-Methyl perfluorooctane	2355-31-9	0.0005	µg/L	<0.0005	<0.0005	<0.0005	 
sulfonamidoacetic acid							
(MeFOSAA)							
N-Ethyl perfluorooctane	2991-50-6	0.0005	µg/L	<0.0005	<0.0005	<0.0005	 
sulfonamidoacetic acid							
(EtFOSAA)							
EP231D: (n:2) Fluorotelomer Sulfon	ic Acids						
4:2 Fluorotelomer sulfonic acid	757124-72-4	0.001	µg/L	<0.001	<0.001	<0.001	 
(4:2 FTS)							
6:2 Fluorotelomer sulfonic acid	27619-97-2	0.001	µg/L	0.001	0.004	<0.001	 
(6:2 FTS)		0.004		-0.004	10 001	10.001	
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.001	µg/L	<0.001	<0.001	<0.001	 
(8:2 FIS)	100000.00.0	0.001		<0.001	<0.001	<0.001	
10:2 Fluorotelomer sulfonic acid	120226-60-0	0.001	µg/L	<0.001	<0.001	<0.001	 
(10:2 FTS)							
EP231P: PFAS Sums							
Sum of PFAS		0.0003	µg/L	0.0531	0.160	0.0795	 
Sum of PFHxS and PFOS	355-46-4/1763-23-	0.0003	µg/L	0.0361	0.121	0.0570	 
	1	0.0000					
Sum of PFAS (WA DER List)		0.0003	µg/L	0.0470	0.148	0.0713	 
EP231S: PFAS Surrogate							
13C4-PFOS		0.0005	%	98.2	96.7	100	 
13C8-PFOA		0.0005	%	95.0	76.0	82.0	 



## Surrogate Control Limits

Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP231S: PFAS Surrogate			
13C4-PFOS		60	120
13C8-PFOA		60	120



## **QUALITY CONTROL REPORT**

Work Order	: ES1911356	Page	: 1 of 6
Client	ENVIRONMENTAL PROJECTS	Laboratory	: Environmental Division Sydney
Contact	: BRAD FITZGERALD	Contact	: Customer Services ES
Address	ELEVEL 3 117 KING WILLIAM ST ADELAIDE SA 5001	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 08 8410 1846	Telephone	: +61-2-8784 8555
Project	: 19040.01 Parafield Airport Groundwater Monitoring Event	Date Samples Received	: 11-Apr-2019
Order number		Date Analysis Commenced	12-Apr-2019
C-O-C number	:	Issue Date	15-Apr-2019
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Appreditation No. 835
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Position

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report								
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)			
EP231A: Perfluoroal	yl Sulfonic Acids (QC Lo	t: 2292706)										
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0003	µg/L	0.0267	0.0274	2.51	0% - 20%			
		EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0005	µg/L	0.0020	0.0026	26.1	No Limit			
		EP231X-ST: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0005	µg/L	0.0015	0.0015	0.00	No Limit			
		EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0005	µg/L	0.0094	0.0100	6.21	0% - 50%			
		EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0005	µg/L	0.0008	0.0008	0.00	No Limit			
		EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit			
EP231B: Perfluoroal	kyl Carboxylic Acids (QC	Lot: 2292706)										
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0005	µg/L	0.0026	0.0024	8.00	No Limit			
		EP231X-ST: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0005	µg/L	0.0009	0.0009	0.00	No Limit			
		EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0005	µg/L	0.0008	0.0006	28.6	No Limit			
		EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.0005	µg/L	0.0036	0.0036	0.00	No Limit			
		EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.0005	µg/L	0.0013	0.0012	0.00	No Limit			
		EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.0005	μg/L	0.0020	0.0022	10.5	No Limit			
		EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit			
		EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit			
		EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit			
		EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit			
		EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit			



Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroalk	yl Sulfonamides (QC Lo	t: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0005	µg/L	0.0005	0.0006	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	P231X-ST: N-Methyl perfluorooctane 2355-31-9 sulfonamidoacetic acid (MeEQSAA)		µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.001	µg/L	<0.001	<0.001	0.00	No Limit
EP231D: (n:2) Fluoro	telomer Sulfonic Acids	(QC Lot: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.001	µg/L	0.001	0.001	0.00	No Limit
		EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	EP231X-ST: 10:2 Fluorotelomer sulfonic acid 120226-60-0 (10:2 FTS)		µg/L	<0.001	<0.001	0.00	No Limit
EP231P: PFAS Sums	(QC Lot: 2292706)								
ES1911356-003	GWP2-PFC	EP231X-ST: Sum of PFAS		0.0003	µg/L	0.0531	0.0548	3.15	0% - 20%



## Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2292706	5)							
EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0005	μg/L	<0.0005	0.01 µg/L	116	50	130
EP231X-ST: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0005	μg/L	<0.0005	0.01 µg/L	111	50	130
EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0005	μg/L	<0.0005	0.01 µg/L	96.0	50	130
EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0005	μg/L	<0.0005	0.01 µg/L	103	50	130
EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0003	μg/L	<0.0003	0.01 µg/L	89.2	50	130
EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0005	μg/L	<0.0005	0.01 µg/L	52.0	50	130
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2292	706)							
EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.002	μg/L	<0.002	0.05 µg/L	65.0	30	130
EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0005	μg/L	<0.0005	0.01 µg/L	126	50	130
EP231X-ST: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0005	μg/L	<0.0005	0.01 µg/L	117	50	130
EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0005	μg/L	<0.0005	0.01 µg/L	120	50	130
EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.0005	μg/L	<0.0005	0.01 µg/L	97.8	50	130
EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.0005	μg/L	<0.0005	0.01 µg/L	99.2	50	130
EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.0005	μg/L	<0.0005	0.01 µg/L	94.6	50	130
EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0005	μg/L	<0.0005	0.01 µg/L	65.6	40	130
EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0005	μg/L	<0.0005	0.01 µg/L	52.2	40	130
EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0005	μg/L	<0.0005	0.01 µg/L	44.6	40	130
EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	μg/L	<0.0005	0.025 µg/L	59.0	40	130
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2292706)								
EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0005	μg/L	<0.0005	0.01 µg/L	96.4	40	130
EP231X-ST: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.001	μg/L	<0.001	0.025 µg/L	53.1	40	130
(MeFOSA)								
EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.001	μg/L	<0.001	0.025 µg/L	52.6	40	130
EP231X-ST: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.001	µg/L	<0.001	0.025 μg/L	63.6	40	130
EP231X-ST: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.001	µg/L	<0.001	0.025 µg/L	55.6	40	130
EP231X-ST: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0005	µg/L	<0.0005	0.01 µg/L	53.8	40	130
EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.0005	µg/L	<0.0005	0.01 µg/L	51.2	40	130
acid (EtFOSAA)								
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 22	.92706)							
EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.001	μg/L	<0.001	0.01 µg/L	112	50	130
EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.001	µg/L	<0.001	0.01 µg/L	128	50	130



Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report					
			Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
P231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2292706) - continued										
EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.001	µg/L	<0.001	0.01 µg/L	116	50	130		
EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.001	µg/L	<0.001	0.01 µg/L	58.4	50	130		
EP231P: PFAS Sums (QCLot: 2292706)										
EP231X-ST: Sum of PFAS		0.0003	µg/L	<0.0003						

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER			Γ	Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.01 µg/L	76.0	50	130
		EP231X-ST: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.01 µg/L	90.0	50	130
		EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01 µg/L	# Not	50	130
					Determined		
		EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.01 µg/L	86.2	50	130
		EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01 µg/L	# Not	50	130
					Determined		
		EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.01 µg/L	75.0	30	130
EP231B: Perfluoro	alkyl Carboxylic Acids (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.05 µg/L	30.4	30	130
		EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.01 µg/L	104	50	130
		EP231X-ST: Perfluorohexanoic acid (PFHxA)	307-24-4	0.01 µg/L	88.0	50	130
		EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.01 µg/L	94.0	50	130
		EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.01 µg/L	90.2	50	130
		EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.01 µg/L	130	50	130
		EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.01 µg/L	125	50	130
		EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.01 µg/L	91.2	30	130
		EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.01 µg/L	39.4	30	130
		EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.01 µg/L	40.4	30	130
		EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.025 µg/L	118	30	130
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.01 µg/L	98.6	30	130
		EP231X-ST: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.025 µg/L	43.4	30	130



Sub-Matrix: WATER				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2292706) - continued						
ES1911356-004	GWP3-PFC	EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.025 µg/L	88.3	30	130
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.025 μg/L	69.4	30	130
		EP231X-ST: N-Ethyl perfluorooctane 1691-99-2 sulfonamidoethanol (EtFOSE)		0.025 µg/L	61.7	30	130
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.01 µg/L	96.8	30	130
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.01 µg/L	78.2	30	130
EP231D: (n:2) Flue	protelomer Sulfonic Acids (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.01 µg/L	100	50	130
		EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.01 µg/L	122	50	130
		EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.01 µg/L	90.0	50	130
		EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.01 µg/L	54.0	50	130



### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES1911356004	GWP3-PFC	Perfluorohexane	355-46-4	Not		MS recovery not determined,
			sulfonic acid		Determined		background level greater than or
			(PFHxS)				equal to 4x spike level.
EP231A: Perfluoroalkyl Sulfonic Acids	ES1911356004	GWP3-PFC	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

								in noiuing time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	1
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	~
EP231C: Perfluoroalkyl Sulfonamides								
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	~	12-Apr-2019	07-Oct-2019	~
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	~	12-Apr-2019	07-Oct-2019	~
EP231P: PFAS Sums								
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	~
							· · · · · · · · · · · · · · · · · · ·	

Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time.



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER			Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification					
Quality Control Sample Type		Co	ount	Rate (%)			Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	



## QA/QC Compliance Assessment to assist with Quality Review

Work Order	ES1911356	Page	: 1 of 4
Client		Laboratory	: Environmental Division Sydney
Contact	: BRAD FITZGERALD	Telephone	: +61-2-8784 8555
Project	: 19040.01 Parafield Airport Groundwater Monitoring Event	Date Samples Received	: 11-Apr-2019
Site	:	Issue Date	: 15-Apr-2019
Sampler	:	No. of samples received	: 6
Order number	:	No. of samples analysed	: 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

## **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction and LC-Electrospray-MS-MS, Negative Mode using MRM. This method is targeted to pristine environmental and drinking waters reporting at sub-parts per trillion. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Preparation Methods	Method	Matrix	Method Descriptions
SPE preparation for LL and saline PFCs	EP231-SPE	WATER	In house



## **QUALITY CONTROL REPORT**

Work Order	: ES1911356	Page	: 1 of 6
Client	ENVIRONMENTAL PROJECTS	Laboratory	: Environmental Division Sydney
Contact	: BRAD FITZGERALD	Contact	: Customer Services ES
Address	ELEVEL 3 117 KING WILLIAM ST ADELAIDE SA 5001	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	: +61 08 8410 1846	Telephone	: +61-2-8784 8555
Project	: 19040.01 Parafield Airport Groundwater Monitoring Event	Date Samples Received	: 11-Apr-2019
Order number		Date Analysis Commenced	12-Apr-2019
C-O-C number	:	Issue Date	15-Apr-2019
Sampler	:		Hac-MRA NATA
Site	:		
Quote number	: EN/333		Appreditation No. 835
No. of samples received	: 6		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits

Position

• Matrix Spike (MS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories

Franco Lentini

Accreditation Category

Sydney Organics, Smithfield, NSW



### **General Comments**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: WATER				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231A: Perfluoroal	yl Sulfonic Acids (QC Lo	t: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0003	µg/L	0.0267	0.0274	2.51	0% - 20%
		EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0005	µg/L	0.0020	0.0026	26.1	No Limit
		(PFBS) EP231X-ST: Perfluoropentane sulfonic acid (PFPeS) EP231X-ST: Perfluorohexane sulfonic acid (PFHxS) EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS) EP231X-ST: Perfluorodecane sulfonic acid (PFDS) s (QC Lot: 2292706)	2706-91-4	0.0005	µg/L	0.0015	0.0015	0.00	No Limit
		EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0005	µg/L	0.0094	0.0100	6.21	0% - 50%
		EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0005	µg/L	0.0008	0.0008	0.00	No Limit
		EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
EP231B: Perfluoroal	kyl Carboxylic Acids (QC	Lot: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0005	µg/L	0.0026	0.0024	8.00	No Limit
		EP231X-ST: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0005	µg/L	0.0009	0.0009	0.00	No Limit
		EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0005	µg/L	0.0008	0.0006	28.6	No Limit
		EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.0005	µg/L	0.0036	0.0036	0.00	No Limit
		EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.0005	µg/L	0.0013	0.0012	0.00	No Limit
		EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.0005	μg/L	0.0020	0.0022	10.5	No Limit
		EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.002	µg/L	<0.002	<0.002	0.00	No Limit


Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP231C: Perfluoroalk	yl Sulfonamides (QC Lo	t: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0005	µg/L	0.0005	0.0006	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0005	µg/L	<0.0005	<0.0005	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	231X-ST: N-Methyl perfluorooctane 24448-09-7 sulfonamidoethanol (MeFOSE)		µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.001	µg/L	<0.001	<0.001	0.00	No Limit
EP231D: (n:2) Fluoro	telomer Sulfonic Acids	(QC Lot: 2292706)							
ES1911356-003	GWP2-PFC	EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.001	µg/L	0.001	0.001	0.00	No Limit
		EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.001	µg/L	<0.001	<0.001	0.00	No Limit
		EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.001	µg/L	<0.001	<0.001	0.00	No Limit
EP231P: PFAS Sums	(QC Lot: 2292706)								
ES1911356-003	GWP2-PFC	EP231X-ST: Sum of PFAS		0.0003	µg/L	0.0531	0.0548	3.15	0% - 20%



### Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 2292706	5)								
EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0005	μg/L	<0.0005	0.01 µg/L	116	50	130	
EP231X-ST: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0005	μg/L	<0.0005	0.01 µg/L	111	50	130	
EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0005	μg/L	<0.0005	0.01 µg/L	96.0	50	130	
EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0005	μg/L	<0.0005	0.01 µg/L	103	50	130	
EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0003	μg/L	<0.0003	0.01 µg/L	89.2	50	130	
EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0005	μg/L	<0.0005	0.01 µg/L	52.0	50	130	
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 2292	706)								
EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.002	μg/L	<0.002	0.05 µg/L	65.0	30	130	
EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0005	μg/L	<0.0005	0.01 µg/L	126	50	130	
EP231X-ST: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0005	μg/L	<0.0005	0.01 µg/L	117	50	130	
EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0005	μg/L	<0.0005	0.01 µg/L	120	50	130	
EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.0005	μg/L	<0.0005	0.01 µg/L	97.8	50	130	
EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.0005	μg/L	<0.0005	0.01 µg/L	99.2	50	130	
EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.0005	μg/L	<0.0005	0.01 µg/L	94.6	50	130	
EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0005	μg/L	<0.0005	0.01 µg/L	65.6	40	130	
EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0005	μg/L	<0.0005	0.01 µg/L	52.2	40	130	
EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0005	μg/L	<0.0005	0.01 µg/L	44.6	40	130	
EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	μg/L	<0.0005	0.025 µg/L	59.0	40	130	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 2292706)									
EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0005	μg/L	<0.0005	0.01 µg/L	96.4	40	130	
EP231X-ST: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.001	μg/L	<0.001	0.025 µg/L	53.1	40	130	
(MeFOSA)									
EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.001	μg/L	<0.001	0.025 µg/L	52.6	40	130	
EP231X-ST: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.001	µg/L	<0.001	0.025 μg/L	63.6	40	130	
EP231X-ST: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.001	µg/L	<0.001	0.025 µg/L	55.6	40	130	
EP231X-ST: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0005	µg/L	<0.0005	0.01 µg/L	53.8	40	130	
EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic	2991-50-6	0.0005	µg/L	<0.0005	0.01 µg/L	51.2	40	130	
acid (EtFOSAA)									
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 22	.92706)								
EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.001	μg/L	<0.001	0.01 µg/L	112	50	130	
EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.001	µg/L	<0.001	0.01 µg/L	128	50	130	



Sub-Matrix: WATER	-Matrix: WATER				Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Recovery Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 2292706) - continued										
EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.001	µg/L	<0.001	0.01 µg/L	116	50	130		
EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.001	µg/L	<0.001	0.01 µg/L	58.4	50	130		
EP231P: PFAS Sums (QCLot: 2292706)										
EP231X-ST: Sum of PFAS		0.0003	µg/L	<0.0003						

## Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: WATER		Γ	Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery Li	mits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP231A: Perfluoro	alkyl Sulfonic Acids (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.01 µg/L	76.0	50	130
		EP231X-ST: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.01 µg/L	90.0	50	130
		EP231X-ST: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01 µg/L	# Not	50	130
					Determined		
		EP231X-ST: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.01 µg/L	86.2	50	130
		EP231X-ST: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01 µg/L	# Not	50	130
					Determined		
		EP231X-ST: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.01 µg/L	75.0	30	130
EP231B: Perfluoro	alkyl Carboxylic Acids (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorobutanoic acid (PFBA)	375-22-4	0.05 µg/L	30.4	30	130
		EP231X-ST: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.01 µg/L	104	50	130
		EP231X-ST: Perfluorohexanoic acid (PFHxA) 307-24		0.01 µg/L	88.0	50	130
		EP231X-ST: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.01 µg/L	94.0	50	130
		EP231X-ST: Perfluorooctanoic acid (PFOA)	335-67-1	0.01 µg/L	90.2	50	130
		EP231X-ST: Perfluorononanoic acid (PFNA)	375-95-1	0.01 µg/L	130	50	130
		EP231X-ST: Perfluorodecanoic acid (PFDA)	335-76-2	0.01 µg/L	125	50	130
		EP231X-ST: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.01 µg/L	91.2	30	130
		EP231X-ST: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.01 µg/L	39.4	30	130
		EP231X-ST: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.01 µg/L	40.4	30	130
		EP231X-ST: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.025 µg/L	118	30	130
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2292706)						
ES1911356-004	GWP3-PFC	EP231X-ST: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.01 µg/L	98.6	30	130
		EP231X-ST: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.025 µg/L	43.4	30	130



Sub-Matrix: WATER				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery L	imits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EP231C: Perfluoro	alkyl Sulfonamides (QCLot: 2292706) - continued							
ES1911356-004	GWP3-PFC	EP231X-ST: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.025 µg/L	88.3	30	130	
		EP231X-ST: N-Methyl perfluorooctane 24448-09-7 sulfonamidoethanol (MeFOSE)			69.4	30	130	
		EP231X-ST: N-Ethyl perfluorooctane 1691-99-2 sulfonamidoethanol (EtFOSE)		0.025 µg/L	61.7	30	130	
		EP231X-ST: N-Methyl perfluorooctane 2355-31-9 sulfonamidoacetic acid (MeFOSAA)		0.01 µg/L	96.8	30	130	
		EP231X-ST: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.01 µg/L	78.2	30	130	
EP231D: (n:2) Flue	protelomer Sulfonic Acids (QCLot: 2292706)							
ES1911356-004	GWP3-PFC	EP231X-ST: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.01 µg/L	100	50	130	
		EP231X-ST: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.01 µg/L	122	50	130	
		EP231X-ST: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.01 µg/L	90.0	50	130	
		EP231X-ST: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.01 µg/L	54.0	50	130	



## QA/QC Compliance Assessment to assist with Quality Review

Work Order	ES1911356	Page	: 1 of 4
Client		Laboratory	: Environmental Division Sydney
Contact	: BRAD FITZGERALD	Telephone	: +61-2-8784 8555
Project	: 19040.01 Parafield Airport Groundwater Monitoring Event	Date Samples Received	: 11-Apr-2019
Site	:	Issue Date	: 15-Apr-2019
Sampler	:	No. of samples received	: 6
Order number	:	No. of samples analysed	: 3

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

## **Summary of Outliers**

#### **Outliers : Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

#### **Outliers : Analysis Holding Time Compliance**

• <u>NO</u> Analysis Holding Time Outliers exist.

### **Outliers : Frequency of Quality Control Samples**

• <u>NO</u> Quality Control Sample Frequency Outliers exist.



#### **Outliers : Quality Control Samples**

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

#### Matrix: WATER

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP231A: Perfluoroalkyl Sulfonic Acids	ES1911356004	GWP3-PFC	Perfluorohexane	355-46-4	Not		MS recovery not determined,
			sulfonic acid		Determined		background level greater than or
			(PFHxS)				equal to 4x spike level.
EP231A: Perfluoroalkyl Sulfonic Acids	ES1911356004	GWP3-PFC	Perfluorooctane	1763-23-1	Not		MS recovery not determined,
			sulfonic acid (PFOS)		Determined		background level greater than or
							equal to 4x spike level.

## Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

								in noiuing time	
Method		Sample Date	Ex	traction / Preparation		Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP231A: Perfluoroalkyl Sulfonic Acids									
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	1	
EP231B: Perfluoroalkyl Carboxylic Acids									
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	~	
EP231C: Perfluoroalkyl Sulfonamides									
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	~	12-Apr-2019	07-Oct-2019	~	
EP231D: (n:2) Fluorotelomer Sulfonic Acids									
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	~	12-Apr-2019	07-Oct-2019	~	
EP231P: PFAS Sums									
HDPE (no PTFE) (EP231X-ST) GWP2-PFC, P44	GWP3-PFC,	10-Apr-2019	12-Apr-2019	07-Oct-2019	1	12-Apr-2019	07-Oct-2019	~	
							· · · · · · · · · · · · · · · · · · ·		

Evaluation: * = Holding time breach ;  $\checkmark$  = Within holding time.



## **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: WATER				Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification				
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification	
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	1	3	33.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard	



## **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X-ST	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction and LC-Electrospray-MS-MS, Negative Mode using MRM. This method is targeted to pristine environmental and drinking waters reporting at sub-parts per trillion. Where commercially available, isotopically labelled analogues of the target analytes are used as internal standards for quantification. Where a labelled analogue is not commercially available, the internal standard with similar chemistry and the closest retention time to the target is used for quantification. The DQO for internal standard response is 50-150% of that established at initial calibration. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. This method complies with the quality control definitions as stated in QSM 5.1. Data is reviewed in line with the DQOs as stated in QSM5.1
Preparation Methods	Method	Matrix	Method Descriptions
SPE preparation for LL and saline PFCs	EP231-SPE	WATER	In house



Australian Government

Department of Industry, Innovation and Science

# National Measurement Institute



Page: 1 of 3

## **REPORT OF ANALYSIS**

				Report No. RN1229650
Client	: ENVIRONMENTAL PROJECTS	Job No		: ENVI193/190411
	UNIT 9	Quote	No.	: QT-02018
	LEVEL 3	Order N	lo.	:
	ADELAIDE SOUTH SA 5000	Date Re	eceived	: 11-APR-2019
Attention	: BRAD FITZGERALD	Sample	ed By	: CLIENT
Project Name	: PARAFIELD AIRPORT GW MONITORIN			
Your Client Se	rvices Manager : Tony Lattari	Phone		: 02 9449 0196
Lab Reg No.	Sample Ref	Sample Description		
N19/009914	DUP-1	WATER 10/04/2019 JOB: 1	9040.01	1
N19/009915	DUP-2	WATER 10/04/2019 JOB: 1	9040.01	1

Lab Reg No.		N19/009914	N19/009915	
Date Sampled		10-APR-2019	10-APR-2019	
Sample Reference		DUP-1	DUP-2	
	Units			Method
PFAS (per-and poly-fluoroalkyl s	substances)			
PFBA (375-22-4)	ug/L	0.0072	0.0051	NR70
PFPeA (2706-90-3)	ug/L	< 0.002	0.0023	NR70
PFHxA (307-24-4)	ug/L	< 0.001	0.0043	NR70
PFHpA (375-85-9)	ug/L	0.0011	0.0018	NR70
PFOA (335-67-1)	ug/L	0.0029	0.0032	NR70
PFNA (375-95-1)	ug/L	< 0.001	< 0.001	NR70
PFDA (335-76-2)	ug/L	0.0015	< 0.001	NR70
PFUdA (2058-94-8)	ug/L	< 0.001	< 0.001	NR70
PFDoA (307-55-1)	ug/L	< 0.001	< 0.001	NR70
PFTrDA (72629-94-8)	ug/L	< 0.002	< 0.002	NR70
PFTeDA (376-06-7)	ug/L	< 0.002	< 0.002	NR70
PFHxDA (67905-19-5)	ug/L	< 0.002	< 0.002	NR70
PFODA (16517-11-6)	ug/L	< 0.005	< 0.005	NR70
FOUEA (70887-84-2)	ug/L	< 0.001	< 0.001	NR70
PFBS (375-73-5)	ug/L	0.0022	0.0085	NR70
PFPeS (2706-91-4)	ug/L	0.0010	0.0080	NR70
PFHxS (355-46-4)	ug/L	0.0069	0.069	NR70
PFHpS (375-92-8)	ug/L	< 0.001	0.0012	NR70
PFOS (1763-23-1)	ug/L	0.021	0.043	NR70
PFNS (68259-12-1)	ug/L	< 0.001	< 0.001	NR70
PFDS (335-77-3)	ug/L	< 0.001	< 0.001	NR70
PFOSA (754-91-6)	ug/L	< 0.001	< 0.001	NR70
N-MeFOSA (31506-32-8)	ug/L	< 0.002	< 0.002	NR70
N-EtFOSA (4151-50-2)	ug/L	< 0.002	< 0.002	NR70
N-MeFOSAA (2355-31-9)	ug/L	< 0.002	< 0.002	NR70
N-EtFOSAA(2991-50-6)	ug/L	< 0.002	< 0.002	NR70
N-MeFOSE (24448-09-7)	ug/L	< 0.005	< 0.005	NR70
N-EtFOSE (1691-99-2)	ug/L	< 0.005	< 0.005	NR70

Accredited for compliance with ISO/IEC 17025 - Testing 105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

## **REPORT OF ANALYSIS**

Page: 2 of 3 Report No. RN1229650

Lab Reg No.		N19/009914	N19/009915					
Date Sampled		10-APR-2019	10-APR-2019					
Sample Reference		DUP-1	DUP-2					
	Units					Method		
PFAS (per-and poly-fluoroalkyl substances)								
4:2 FTS (757124-72-4)	ug/L	< 0.001	< 0.001			NR70		
6:2 FTS (27619-97-2)	ug/L	0.0022	0.0048			NR70		
8:2 FTS (39108-34-4)	ug/L	< 0.001	< 0.001			NR70		
10:2 FTS (120226-60-0)	ug/L	< 0.001	< 0.001			NR70		
8:2 diPAP (678-41-1)	ug/L	< 0.002	< 0.002			NR70		
PFBA (Surrogate Recovery)	%	109	113			NR70		
PFPeA (Surrogate Recovery)	%	174	147			NR70		
PFHxA (Surrogate Recovery)	%	93	94			NR70		
PFHpA (Surrogate Recovery)	%	98	115			NR70		
PFOA (Surrogate Recovery)	%	107	113			NR70		
PFNA (Surrogate Recovery)	%	109	105			NR70		
PFDA (Surrogate Recovery)	%	103	127			NR70		
PFUdA (Surrogate Recovery)	%	89	133			NR70		
PFDoA (Surrogate Recovery)	%	99	109			NR70		
PFTeDA (Surrogate Recovery)	%	80	88			NR70		
PFHxDA (Surrogate Recovery)	%	90	90			NR70		
FOUEA (Surrogate Recovery)	%	79	80			NR70		
PFBS (Surrogate Recovery)	%	93	77			NR70		
PFHxS (Surrogate Recovery)	%	99	95			NR70		
PFOS (Surrogate Recovery)	%	103	116			NR70		
PFOSA (Surrogate Recovery)	%	90	71			NR70		
N-MeFOSA (Surrogate Recovery	)%	50	26			NR70		
N-EtFOSA (Surrogate Recovery)	%	41	38			NR70		
N-MeFOSAA (Surrogate Recove	r\$⁄}	94	100			NR70		
N-EtFOSAA (Surrogate Recover	19/0	85	108			NR70		
N-MeFOSE (Surrogate Recovery	%	67	72			NR70		
N-EtFOSE (Surrogate Recovery)	%	93	74			NR70		
4:2 FTS (Surrogate Recovery)	%	78	53			NR70		
6:2 FTS (Surrogate Recovery)	%	90	76			NR70		
8:2 FTS (Surrogate Recovery)	%	105	126			NR70		
8:2 diPAP (Surrogate Recovery)	%	49	44			NR70		
Dates								
Date extracted		17-APR-2019	17-APR-2019					
Date analysed		18-APR-2019	18-APR-2019					

N19/009914 to

N19/009915:

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

## **REPORT OF ANALYSIS**

Page: 3 of 3 Report No. RN1229650

PFOS is quantified using a combined branched and linear standard, linear and branched isomers are totalled for reporting. All results corrected for labelled surrogate recoveries. Selected PFAS surrogate recoveries are biased due to matrix effects.

All. 0

Danny Slee, Section Manager Organic - NSW Accreditation No. 198

18-APR-2019



Accredited for compliance with ISO/IEC 17025 - Testing. This report shall not be reproduced except in full. Results relate only to the sample(s) tested.

This Report supersedes reports: RN1229610

Measurement Uncertainty is available upon request. Chemical Accreditation 198: 105 Delhi Road, North Ryde, NSW, 2113

105 Delhi Road, North Ryde NSW 2113 Tel: +61 2 9449 0111 www.measurement.gov.au

National Measurement Institute



### Australian Government

National Measurement Institute

## QUALITY ASSURANCE REPORT

### **Client:**

#### **ENVIRONMENTAL PROJECTS**

NMI QA Report No:

ENVI193/190411

Sample Matrix: Liquid

Method LOR Blank Analyte Sample Duplicates Recoveries RPD Sample Duplicate LCS Matrix Spike ug/L ug/L ug/L ug/L % % % PFBA (375-22-4) NR70 0.005 < 0.005 NA NA NA 122 NA PFPeA (2706-90-3) NR70 NA 0.002 < 0.002 NA NA 104 NA PFHxA (307-24-4) **NR70** 0.001 < 0.001 NA NA NA 97 NA PFHpA (375-85-9) < 0.001 101 **NR70** 0.001 NA NA NA NA PFOA (335-67-1) NR70 0.001 < 0.001 NA NA NA 97 NA PFNA (375-95-1) NR70 0.001 < 0.001 NA NA 107 NA NA PFDA (335-76-2) NA **NR70** 0.001 < 0.001 NA NA 100 NA PFUdA (2058-94-8) NR70 0.001 < 0.001 NA NA NA 104 NA PFDoA (307-55-1) NA 113 NA **NR70** 0.001 < 0.001NA NA PFTrDA (72629-94-8) NR70 0.002 < 0.002 NA NA NA 101 NA PFTeDA (376-06-7) < 0.002 NA NA 120 NR70 0.002 NA NA PFHxDA (67905-19-5) 124 **NR70** 0.002 < 0.002 NA NA NA NA PFODA (16517-11-6) NR70 0.005 < 0.005 NA NA NA 15 NA FOUEA (70887-84-2) NR70 0.001 < 0.001 NA NA NA 108 NA PFBS (375-73-5) **NR70** 0.001 < 0.001 NA NA NA 105 NA PFPeS (2706-91-4) 0.001 < 0.001 NA 104 NR70 NA NA NA PFHxS (355-46-4) NR70 0.001 < 0.001 NA NA 102 NA NA PFHpS (375-92-8) NR70 0.001 < 0.001 NA NA NA 101 NA PFOS (1763-23-1) NR70 0.002 < 0.002 NA NA NA 110 NA PFNS (68259-12-1) NR70 0.001 < 0.001 NA NA NA 100 NA PFDS (335-77-3) **NR70** 0.001 < 0.001 NA NA NA 98 NA PFOSA (754-91-6) **NR70** 0.001 < 0.001 NA NA NA 108 NA N-MeFOSA (31506-32-8) **NR70** 0.002 < 0.002 NA NA NA 126 NA 96 N-EtFOSA (4151-50-2) **NR70** 0.002 < 0.002 NA NΑ NA NA N-MeFOSAA (2355-31-9) **NR70** 0.002 < 0.002 NA NA NA 101 NA NR70 0.002 NA N-EtFOSAA(2991-50-6) < 0.002 NA 105 NA NA N-MeFOSE (24448-09-7) 0.005 < 0.005 NA NA NA 149 NA **NR70** NR70 0.005 < 0.005 NA NA NA 132 NA N-EtFOSE (1691-99-2) < 0.001 NA NA 115 **NR70** 0.001 NA NA 4:2 FTS (757124-72-4) NR70 0.001 < 0.001 NA NA NA 106 NA 6:2 FTS (27619-97-2) NR70 NA NA 101 8:2 FTS (39108-34-4) 0.001 < 0.001 NA NA **NR70** 0.001 < 0.001 NA NA NA 84 NA 10:2 FTS (120226-60-0) 8:2 diPAP (678-41-1) **NR70** 0.002 < 0.002 NA NA NA 116 NA

Results expressed in percentage (%) or ug/L wherever appropriate.

Acceptable Spike recovery is 50-150%.

Maximum acceptable RPDs on spikes and duplicates is 40%.

'NA ' = Not Applicable.

RPD= Relative Percentage Difference.

Signed:

Date:

Alu

Danny Slee Organics Manager, NMI-North Ryde 18/04/2019

# Appendix K – PFAS Timeline

# **PFAS Timeline 2008 – 2016** Initial assessments and development of guidance

2008

Feb 1 - Feb 1



Aug 31 AsA advise SA EPA of PFAS contamination at Adelaide Airport via national roadshow

AsA and Defence push regulators to develop Australian guidance for PFAS

CRC CARE PFAS guidance documents (inc. Expert review: human health criteria) reviewed by CRC CARE PFAS TWG.

## PFAS Timeline 2016 – 2018 Investigations and development of guideline values





GHD Level 4, 211 Victoria Square Adelaide SA 5000 T: 61 8 8111 6600 F: 61 8 8111 6699 E: adlmail@ghd.com

© GHD 2019

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited. 3319051-25139/G:\33\19051\GME & Survey Report combined\Parafield report 3319051 Rev4.docx

**Document Status** 

Revision	Author	Reviewer		Approved for Issue		
		Name	Signature	Name	Signature	Date
1	J Chance	J Howard	*	J Howard	*	4/4/2019
2	J Chance	J Howard	*	J Howard	*	18/06/2019
3	D Valiff	J Howard	Altroy	J Howard	Altroy	1/07/2019
4	D Valiff	J Howard	Aller	J Howard	Allow	6/08/2019
5	D Valiff M Hanna (edits)	B Smith	Bonto.	B Smith	But .	20/08/2019
6	M Hanna (report compiled)	J Howard	Aling	J Howard	Alan	2/09/2019

# www.ghd.com

